Lidars With Narrow FOV for Daylight Measurements

被引:12
作者
Eixmann, Ronald [1 ]
Gerding, Michael [2 ]
Hoeffner, Josef [2 ]
Kopp, Maren [2 ]
机构
[1] Univ Rostock, Leibniz Inst Atmospher Phys, Dept Opt Soundings, D-18225 Kuhlungsborn, Germany
[2] Univ Rostock, Leibniz Inst Atmospher Phys, D-18225 Kuhlungsborn, Germany
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2015年 / 53卷 / 08期
关键词
Daylight Rayleigh lidar; laser beam stabilization system (BSS); middle atmosphere; 105 KM ALTITUDE; MESOPAUSE TEMPERATURE; RAYLEIGH; RESONANCE; SYSTEM;
D O I
10.1109/TGRS.2015.2401333
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Daytime lidar operation in the middle atmosphere requires a narrow field of view (FOV) of the receiving telescope for effective background reduction and a high-transmission narrow-band detection. The laser beam position in the atmosphere relative to the optical axis of the receiving telescope is subject to high-frequency disturbances such as turbulence, vibration, and wind as well as comparable slow drift (thermal effects of the laser, stability of the building, etc.). We developed a beam stabilization system (BSS) that ensured a pulse-to-pulse stabilization of the laser beam with similar to 3 mu rad remaining jitter, allowing similar to 60 mu rad FOV. With BSS and single-pulse data acquisition system, the optimal alignment of the laser and telescope can be controlled, and information on the FOV and laser divergence in the far field can be derived. The capability of the BSS is to stabilize the laser against all internal and external disturbances below the repetition rate of the laser.
引用
收藏
页码:4548 / 4553
页数:6
相关论文
共 14 条
[1]   Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering [J].
Alpers, M ;
Eixmann, R ;
Fricke-Begemann, C ;
Gerding, M ;
Höffner, J .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2004, 4 :793-800
[2]  
ALPERS M, 1999, J AEROSOL SCI S1, V30, P637
[3]   SODIUM-VAPOR DISPERSIVE FARADAY FILTER [J].
CHEN, H ;
SHE, CY ;
SEARCY, P ;
KOREVAAR, E .
OPTICS LETTERS, 1993, 18 (12) :1019-1021
[4]   Daylight rejection with a new receiver for potassium resonance temperature lidars [J].
Fricke-Begemann, C ;
Alpers, M ;
Höffner, J .
OPTICS LETTERS, 2002, 27 (21) :1932-1934
[5]   Seasonal variation of nocturnal temperatures between 1 and 105 km altitude at 54° N observed by lidar [J].
Gerding, M. ;
Hoeffner, J. ;
Lautenbach, J. ;
Rauthe, M. ;
Luebken, F. -J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (24) :7465-7482
[6]  
Gerding M., 2010, 25 INT LAS RAD C ST, P67
[7]   Active beam position stabilization of pulsed lasers for long-distance ion profile diagnostics at the Spallation Neutron Source (SNS) [J].
Hardin, Robert A. ;
Liu, Yun ;
Long, Cary ;
Aleksandrov, Alexander ;
Blokland, Willem .
OPTICS EXPRESS, 2011, 19 (04) :2874-2885
[8]   Daylight measurements of mesopause temperature and vertical wind with the mobile scanning iron lidar [J].
Hoeffner, Josef ;
Lautenbach, Jens .
OPTICS LETTERS, 2009, 34 (09) :1351-1353
[9]   First year of Rayleigh lidar measurements of middle atmosphere temperatures above Davis, Antarctica [J].
Klekociuk, AR ;
Lambert, MM ;
Vincent, RA ;
Dowdy, AJ .
MIDDLE ATMOSPHERE STRUCTURE AND DYNAMICS, 2003, 32 (05) :771-776
[10]   Seasonal changes in gravity wave activity measured by lidars at mid-latitudes [J].
Rauthe, M. ;
Gerding, M. ;
Luebken, F. -J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (22) :6775-6787