On the global well-posedness of some free boundary problem for a compressible barotropic viscous fluid flow

被引:3
作者
Shibata, Yoshihiro [1 ,2 ]
机构
[1] Waseda Univ, Dept Math, Shinjuku Ku, Ohkubo 3-4-1, Tokyo 1698555, Japan
[2] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Ohkubo 3-4-1, Tokyo 1698555, Japan
来源
RECENT ADVANCES IN PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2016年 / 666卷
关键词
D O I
10.1090/conm/666/13240
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a global in time unique existence theorem for the free boundary problem of a compressible barotropic viscous fluid flow without surface tension in the L-p in time and L-q in space framework with 2 < p < infinity and N < q < infinity under the assumption that the initial domain is bounded and initial data are small enough and orthogonal to rigid motions. Such global well-posedness was proved by Zajaczkowski in 1993 in the L-2 framework, and our result is an extension of his result to the maximal L-p-L-q regularity setting. We use the maximal L-p-L-q regularity theorem for the linearlized equations and the exponential stability of the corresponding analytic semigroup, which is a completely different approach than Zajaczkowski (1993).
引用
收藏
页码:341 / 356
页数:16
相关论文
共 15 条
[1]  
Amann Herbert, 1995, MONOGRAPHS MATH, VI
[2]  
Denisova I. V., 2003, ST PETERSB MATH J, V14, P53
[3]  
Denisova I. V., 2003, J. Math. Sci. (N. Y.), V115, P2753
[4]  
Denisova I. V., 2000, ZAP NAUCHN SEM S PET, V271, p[92, 315], DOI [10.1023/A:1023365718404, DOI 10.1023/A:1023365718404]
[5]  
Duvaut G., 1976, INEQUALITIES MECH PH, P219
[6]  
Enomoto Y., 2014, ANN U FERRARA, V60, P55, DOI DOI 10.1007/S11565-013-0194-8
[7]   On the R-Sectoriality and the Initial Boundary Value Problem for the Viscous Compressible Fluid Flow [J].
Enomoto, Yuko ;
Shibata, Yoshihiro .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2013, 56 (03) :441-505
[8]  
SECCHI P, 1983, J REINE ANGEW MATH, V341, P1
[9]   On some free boundary problem of the Navier-Stokes equations in the maximal Lp-Lq regularity class [J].
Shibata, Yoshihiro .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (12) :4127-4155
[10]  
Solonnikov V. A., 1991, CONSTANTIN CARATHEOD, V2, P1270