GRAPHS AND IDEALS GENERATED BY SOME 2-MINORS

被引:123
作者
Ohtani, Masahiro [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan
关键词
Grobner basis; Hamilton cycle; 2-Minor; Primary decomposition;
D O I
10.1080/00927870903527584
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite graph on [n] = {1, 2, ... , n}, X a 2 x n matrix of indeterminates over a field K, and S = K[X] a polynomial ring over K. In this article, we study about ideals I-G of S generated by 2-minors [i, j] of X which correspond to edges {i, j} of G. In particular, we construct a Grobner basis of I-G as a set of paths of G and compute a primary decomposition.
引用
收藏
页码:905 / 917
页数:13
相关论文
共 9 条
[1]  
Bruns W., 1998, COHEN MACAULAY RINGS
[2]  
Bruns Winfried., 1988, LECT NOTES MATH, P1327, DOI 10.1007/BFb0080378
[3]   LADDER DETERMINANTAL RINGS [J].
CONCA, A .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 98 (02) :119-134
[4]  
COX D., 2006, IDEALS VARIETIES ALG
[5]  
Diaconis P., 1998, PROGR MATH, V161, P173
[6]   Binomial edge ideals and conditional independence statements [J].
Herzog, Juergen ;
Hibi, Takayuki ;
Hreinsdottir, Freyja ;
Kahle, Thomas ;
Rauh, Johannes .
ADVANCES IN APPLIED MATHEMATICS, 2010, 45 (03) :317-333
[7]   Ideals of adjacent minors [J].
Hosten, S ;
Sullivant, S .
JOURNAL OF ALGEBRA, 2004, 277 (02) :615-642
[8]  
Ore O., 1960, Amer. Math. Monthly, V67, P55, DOI [10.2307/2308928, DOI 10.2307/2308928]
[9]  
Tutte W. T., 1956, Trans. Amer. Math. Soc., V82, P99, DOI DOI 10.1090/S0002-9947-1956-0081471-8