On long time integration of the heat equation

被引:5
作者
Andreev, Roman [1 ]
机构
[1] RICAM, Altenberger Str 69, A-4040 Linz, Austria
关键词
Heat equation; Long-time; Laguerre polynomials; Stability; STABILITY;
D O I
10.1007/s10092-014-0133-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct space-time Petrov-Galerkin discretizations of the heat equation on an unbounded temporal interval, either right-unbounded or left-unbounded. The discrete trial and test spaces are defined using Laguerre polynomials in time and are shown to satisfy the discrete inf-sup condition. Numerical examples are provided.
引用
收藏
页码:19 / 34
页数:16
相关论文
共 10 条
[1]  
Abramowitz M., 1970, Handbook of Mathematical Functions
[2]   Space-time discretization of the heat equation [J].
Andreev, Roman .
NUMERICAL ALGORITHMS, 2014, 67 (04) :713-731
[3]   Stability of sparse space-time finite element discretizations of linear parabolic evolution equations [J].
Andreev, Roman .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (01) :242-260
[4]  
[Anonymous], 2004, ORTHOGONAL POLYNOMIA, DOI DOI 10.1093/OSO/9780198506720.001.0001, Patent No. 220512815
[5]  
[Anonymous], 1966, METHODS MATH PHYS
[6]  
Babuska I., 1989, NUMER METH PART D E, V4, P363, DOI DOI 10.1002/num.1690050407
[7]  
Bank RE, 2014, NUMER MATH, V126, P361, DOI 10.1007/s00211-013-0562-4
[8]   Numerical integration based on Laguerre-Gauss interpolation [J].
Ben-yu, Guo ;
Zhong-qing, Wang .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (37-40) :3726-3741
[9]   SPACE-TIME ADAPTIVE WAVELET METHODS FOR PARABOLIC EVOLUTION PROBLEMS [J].
Schwab, Christoph ;
Stevenson, Rob .
MATHEMATICS OF COMPUTATION, 2009, 78 (267) :1293-1318
[10]   Some observations on Babuska and Brezzi theories [J].
Xu, JC ;
Zikatanov, L .
NUMERISCHE MATHEMATIK, 2003, 94 (01) :195-202