Time series from the ordinal viewpoint

被引:45
作者
Keller, Karsten [1 ]
Sinn, Mathieu [1 ]
Emonds, Jan [1 ]
机构
[1] Univ Lubeck, Inst Math, D-23560 Lubeck, Germany
关键词
time series; ordinal pattern; mixing;
D O I
10.1142/S0219493707002025
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Ordinal time series analysis is a new approach to the investigation of long and complex time series, which bases on ordinal patterns describing the order relations between the values of a time series. In this paper we consider ordinal time series analysis from the conceptional viewpoint. In particular, we introduce ordinal processes as models for ordinal time series analysis and discuss the structure of ordinal pattern distributions obtained from them. Special emphasis is on the relation of ordinal time series analysis to symbolic dynamics and to a transformation extracting the whole ordinal information contained in a time series. Finally, we consider invariance properties of ordinal time series analysis.
引用
收藏
页码:247 / 272
页数:26
相关论文
共 16 条
[1]  
24Walters P., 2000, An Introduction to Ergodic Theory, V79
[2]   The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems [J].
Amigó, JM ;
Kennel, MB ;
Kocarev, L .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 210 (1-2) :77-95
[3]   Permutation entropy: A natural complexity measure for time series [J].
Bandt, C ;
Pompe, B .
PHYSICAL REVIEW LETTERS, 2002, 88 (17) :4
[4]   Entropy of interval maps via permutations [J].
Bandt, C ;
Keller, G ;
Pompe, B .
NONLINEARITY, 2002, 15 (05) :1595-1602
[5]  
Cao YH, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.046217
[6]   A review of symbolic analysis of experimental data [J].
Daw, CS ;
Finney, CEA ;
Tracy, ER .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (02) :915-930
[7]  
Diaconis P., 1988, GROUP REPRESENTATION
[8]  
Embrechts P, 2002, PRIN SER APPL MATH, P1
[9]  
FAUL S, 2006, IEEE INT WORKSH INT, P381
[10]  
Kallenberg O, 2002, FDN MODERN PROBABILI