Approaching conversion limit with all-dielectric solar cell reflectors

被引:5
作者
Fu, Sze Ming [1 ]
Lai, Yi-Chun [3 ]
Tseng, Chi Wei [1 ]
Yan, Sheng Lun [1 ]
Zhong, Yan Kai [1 ]
Shen, Chang-Hong [2 ]
Shieh, Jia-Min [2 ]
Li, Yu-Ren [1 ]
Cheng, Huang-Chung [1 ]
Chi, Gou-Chung [3 ]
Yu, Peichen [3 ]
Lin, Albert [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Elect Engn, Hsinchu 30010, Taiwan
[2] Natl Device Lab, Hsinchu 30010, Taiwan
[3] Natl Chiao Tung Univ, Dept Photon, Hsinchu 30010, Taiwan
关键词
PHOTOCURRENT ENHANCEMENT; ABSORPTION ENHANCEMENT; FUNDAMENTAL LIMIT; SILICON; LIGHT; GRATINGS; DESIGN; PHOTOVOLTAICS; OPTIMIZATION; TEXTURES;
D O I
10.1364/OE.23.00A106
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Metallic back reflectors has been used for thin-film and wafer-based solar cells for very long time. Nonetheless, the metallic mirrors might not be the best choices for photovoltaics. In this work, we show that solar cells with all-dielectric reflectors can surpass the best-configured metal-backed devices. Theoretical and experimental results all show that superior large-angle light scattering capability can be achieved by the diffuse medium reflectors, and the solar cell J-V enhancement is higher for solar cells using all-dielectric reflectors. Specifically, the measured diffused scattering efficiency (D.S.E.) of a diffuse medium reflector is >0.8 for the light trapping spectral range (600nm-1000nm), and the measured reflectance of a diffuse medium can be as high as silver if the geometry of embedded titanium oxide(TiO2) nanoparticles is optimized. Moreover, the diffuse medium reflectors have the additional advantage of room-temperature processing, low cost, and very high throughput. We believe that using all-dielectric solar cell reflectors is a way to approach the thermodynamic conversion limit by completely excluding metallic dissipation. (C) 2015 Optical Society of America
引用
收藏
页码:A106 / A117
页数:12
相关论文
共 48 条
[1]  
[Anonymous], RSOFT CAD US MAN
[2]   Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells [J].
Basch, A. ;
Beck, F. J. ;
Soederstroem, T. ;
Varlamov, S. ;
Catchpole, K. R. .
APPLIED PHYSICS LETTERS, 2012, 100 (24)
[3]   Light Trapping in Solar Cells: Can Periodic Beat Random? [J].
Battaglia, Corsin ;
Hsu, Ching-Mei ;
Soederstroem, Karin ;
Escarre, Jordi ;
Haug, Franz-Josef ;
Charriere, Mathieu ;
Boccard, Mathieu ;
Despeisse, Matthieu ;
Alexander, Duncan T. L. ;
Cantoni, Marco ;
Cui, Yi ;
Ballif, Christophe .
ACS NANO, 2012, 6 (03) :2790-2797
[4]   Light trapping with plasmonic particles: beyond the dipole model [J].
Beck, Fiona J. ;
Mokkapati, Sudha ;
Catchpole, Kylie R. .
OPTICS EXPRESS, 2011, 19 (25) :25230-25241
[5]   Commercial white paint as back surface reflector for thin-film solar cells [J].
Berger, Olaf ;
Inns, Daniel ;
Aberle, Armin G. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (13) :1215-1221
[6]   Optical intensity of light in layers of silicon with rear diffuse reflectors [J].
Cotter, JE .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (01) :618-624
[7]  
Cotter JE, 1999, PROG PHOTOVOLTAICS, V7, P261, DOI 10.1002/(SICI)1099-159X(199907/08)7:4<261::AID-PIP256>3.0.CO
[8]  
2-A
[9]   Optimization of slow light one-dimensional Bragg structures for photocurrent enhancement in solar cells [J].
Deparis, Olivier ;
El Daif, Ounsi .
OPTICS LETTERS, 2012, 37 (20) :4230-4232
[10]   Nanoparticle Stacks with Graded Refractive Indices Enhance the Omnidirectional Light Harvesting of Solar Cells and the Light Extraction of Light-Emitting Diodes [J].
Fang, Cheng-Yi ;
Liu, Yu-Lun ;
Lee, Yang-Chun ;
Chen, Hsuen-Li ;
Wan, De-Hui ;
Yu, Chen-Chieh .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (11) :1412-1421