The isomorphism problem for universal enveloping algebras of lie algebras

被引:11
|
作者
Riley, David [1 ]
Usefi, Hamid [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
universal enveloping algebras; lie algebras;
D O I
10.1007/s10468-007-9083-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a Lie algebra with universal enveloping algebra U(L). We prove that if H is another Lie algebra with the property that U(L) congruent to U(H) then certain invariants of L are inherited by H. For example, we prove that if L is nilpotent then H is nilpotent with the same class as L. We also prove that if L is nilpotent of class at most two then L is isomorphic to H.
引用
收藏
页码:517 / 532
页数:16
相关论文
共 50 条
  • [41] GROUP ALGEBRAS OF FINITE GROUPS AS LIE ALGEBRAS
    Marin, Ivan
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (07) : 2572 - 2584
  • [42] On Schur algebras and derivations of free Lie algebras
    Cohen, Frederick
    Elhamdadi, Mohamed
    Jin, Tao
    Liu, Minghui
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (01) : 272 - 292
  • [43] Generic Semisimplicity of Reduced Enveloping Algebras
    Skryabin, Serge
    LIE ALGEBRAS AND RELATED TOPICS, 2015, 652 : 153 - 171
  • [44] Generalizations of Lie Algebras
    Kharchenko, V. K.
    Shestakov, I. P.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2012, 22 (03) : 721 - 743
  • [45] QUADRATIC LIE ALGEBRAS
    Ardizzoni, Alessandro
    Stumbo, Fabio
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (08) : 2723 - 2751
  • [46] Quasicrystal Lie algebras
    Patera, J
    Pelantova, E
    Twarock, R
    PHYSICS LETTERS A, 1998, 246 (3-4) : 209 - 213
  • [47] Simple Lie algebras
    Osborn, JM
    Winter, DJ
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (11) : 5405 - 5420
  • [48] Lie groups and lie algebras in robotics
    Selig, JM
    COMPUTATIONAL NONCOMMUTATIVE ALGEBRA AND APPLICATIONS, 2004, 136 : 101 - 125
  • [49] Locally loop algebras and locally affine Lie algebras
    Morita, Jun
    Yoshii, Yoji
    JOURNAL OF ALGEBRA, 2015, 440 : 379 - 442
  • [50] Quiver Hecke Algebras and 2-Lie Algebras
    Rouquier, Raphael
    ALGEBRA COLLOQUIUM, 2012, 19 (02) : 359 - 410