The isomorphism problem for universal enveloping algebras of lie algebras

被引:11
|
作者
Riley, David [1 ]
Usefi, Hamid [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
universal enveloping algebras; lie algebras;
D O I
10.1007/s10468-007-9083-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a Lie algebra with universal enveloping algebra U(L). We prove that if H is another Lie algebra with the property that U(L) congruent to U(H) then certain invariants of L are inherited by H. For example, we prove that if L is nilpotent then H is nilpotent with the same class as L. We also prove that if L is nilpotent of class at most two then L is isomorphic to H.
引用
收藏
页码:517 / 532
页数:16
相关论文
共 50 条
  • [21] STANDARD LYNDON BASES OF LIE-ALGEBRAS AND ENVELOPING-ALGEBRAS
    LALONDE, P
    RAM, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (05) : 1821 - 1830
  • [22] The structures on the universal enveloping algebras of differential graded Poisson Hopf algebras
    Guo, Mengtian
    Hu, Xianguo
    Lu, Jiafeng
    Wang, Xingting
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (06) : 2714 - 2729
  • [23] Right ideals in non-associative universal enveloping algebras of lie triple systems
    Perez-Izquierdo, Jose M.
    JOURNAL OF LIE THEORY, 2008, 18 (02) : 375 - 382
  • [24] PBW-Basis for Universal Enveloping Algebras of Differential Graded Poisson Algebras
    Xianguo Hu
    Jiafeng Lü
    Xingting Wang
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 3343 - 3377
  • [25] Enveloping algebras of Malcev algebras
    Bremner, Murray R.
    Hentzel, Irvin R.
    Peresi, Luiz A.
    Tvalavadze, Marina V.
    Usefi, Hamid
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2010, 51 (02): : 157 - 174
  • [26] PBW-Basis for Universal Enveloping Algebras of Differential Graded Poisson Algebras
    Hu, Xianguo
    Lue, Jiafeng
    Wang, Xingting
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (06) : 3343 - 3377
  • [27] Universal enveloping Hom-algebras of regular Hom-Poisson algebras
    Hu, Xianguo
    AIMS MATHEMATICS, 2022, 7 (04): : 5712 - 5727
  • [28] L?-formality check for the Hochschild complex of certain universal enveloping algebras
    Bordemann, Martin
    Elchinger, Olivier
    Gutt, Simone
    Makhlouf, Abdenacer
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 187
  • [29] Twisted bimodules and universal enveloping algebras associated to VOAs
    Han, Jianzhi
    Xiao, Yukun
    Xu, Shun
    JOURNAL OF ALGEBRA, 2025, 664 : 1 - 25
  • [30] Lie algebras with BCL algebras
    Liu, Yonghong
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, 11 (02): : 444 - 448