On the long time behaviour of the conical Kahler-Ricci flows

被引:11
作者
Chen, Xiuxiong [1 ]
Wang, Yuanqi [2 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2018年 / 744卷
基金
中国国家自然科学基金;
关键词
EINSTEIN METRICS; CONVERGENCE; CURVATURE; DIVISORS; LIMITS;
D O I
10.1515/crelle-2015-0103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the conical Kahler-Ricci flows introduced in [11] exist for all time t is an element of [0, +infinity). These immortal flows possess maximal regularity in the conical category. As an application, we show if the twisted first Chern class C-1,C-beta is negative or zero, the corresponding conical Kahler-Ricci flows converge to Kahler-Einstein metrics with conical singularities exponentially fast. To establish these results, one of our key steps is to prove a Liouvillc-type theorem for Kahler-Ricci flat metrics (which are defined over C-n) with conical singularities.
引用
收藏
页码:165 / 199
页数:35
相关论文
共 38 条