Base polytopes of series-parallel posets: Linear description and optimization

被引:0
|
作者
Schrader, R
Schulz, AS
Wambach, G
机构
[1] Univ Koln, Inst Informat, D-50931 Cologne, Germany
[2] Tech Univ Berlin, Fachbereich Math, D-10623 Berlin, Germany
关键词
polyhedral combinatorics; series-parallel posets; base polytopes; supermodular functions; greedy algorithm; integer programming;
D O I
10.1007/BF01585869
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We define the base polytope B(P, g) of partially ordered set P and a supermodular function g on the ideals of P as the convex hull of the incidence vectors of all linear extensions of P. This new class of polytopes contains, among others, the base polytopes of supermodular systems and permutahedra as special cases. After introducing the notion of compatibility for g, we give a complete linear description of B(P, g) for series-parallel posets and compatible functions g. In addition, we describe a greedy-type procedure which exhibits Sidney's job sequencing algorithm to minimize the total weighted completion time as a natural extension of the matroidal greedy algorithm from sets to posets. (C) 1998 The Mathematical Programing Society, Inc. Published by Elsevier Science B.V.
引用
收藏
页码:159 / 173
页数:15
相关论文
共 50 条
  • [1] Base polytopes of series-parallel posets: Linear description and optimization
    Inst. Informatik Zentrum P., Universität zu Köln, Weyertal 86-90, D-50931 Köln, Germany
    不详
    Math Program Ser B, 1-2 (159-173):
  • [2] Base polytopes of series—parallel posets: Linear description and optimization
    Rainer Schrader
    Andreas S. Schulz
    Georg Wambach
    Mathematical Programming, 1998, 82 : 159 - 173
  • [3] MATROID BASE POLYTOPES FOR SERIES-PARALLEL EXTENSIONS
    Kim, Sangwook
    HONAM MATHEMATICAL JOURNAL, 2016, 38 (02): : 393 - 401
  • [4] THE PERMUTAHEDRON OF SERIES-PARALLEL POSETS
    SCHULZ, AS
    DISCRETE APPLIED MATHEMATICS, 1995, 57 (01) : 85 - 90
  • [5] THE PERMUTAHEDRON OF SERIES-PARALLEL POSETS
    VONARNIM, A
    FAIGLE, U
    SCHRADER, R
    DISCRETE APPLIED MATHEMATICS, 1990, 28 (01) : 3 - 9
  • [6] Entropic Uniform Sampling of Linear Extensions in Series-Parallel Posets
    Bodini, Olivier
    Dien, Matthieu
    Genitrini, Antoine
    Peschanski, Frederic
    COMPUTER SCIENCE - THEORY AND APPLICATIONS (CSR 2017), 2017, 10304 : 71 - 84
  • [7] Series-parallel posets and the Tutte polynomial
    Gordon, G
    DISCRETE MATHEMATICS, 1996, 158 (1-3) : 63 - 75
  • [8] Retractions onto series-parallel posets
    Dalmau, Victor
    Krokhin, Andrei
    Larose, Benoit
    DISCRETE MATHEMATICS, 2008, 308 (11) : 2104 - 2114
  • [9] The setup polyhedron of series-parallel posets
    Schrader, R
    Wambach, G
    DISCRETE APPLIED MATHEMATICS, 1997, 79 (1-3) : 213 - 221
  • [10] ARBORESCENCE POLYTOPES FOR SERIES-PARALLEL GRAPHS
    GOEMANS, MX
    DISCRETE APPLIED MATHEMATICS, 1994, 51 (03) : 277 - 289