Which Boolean Functions are Most Informative?

被引:0
作者
Kumar, Gowtham R. [1 ]
Courtade, Thomas A. [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
来源
2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT) | 2013年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce a simply stated conjecture regarding the maximum mutual information a Boolean function can reveal about noisy inputs. Specifically, let X-n be i.i.d. Bernoulli(1/2), and let Y-n be the result of passing X-n through a memoryless binary symmetric channel with crossover probability alpha. For any Boolean function b : {0, 1}(n) -> {0, 1}, we conjecture that I(b(X-n); Y-n) <= 1 - H(alpha). While the conjecture remains open, we provide substantial evidence supporting its validity.
引用
收藏
页码:226 / 230
页数:5
相关论文
共 9 条
[1]  
Allaart PC, 2011, REAL ANAL EXCH, V37, P1
[2]  
[Anonymous], 2006, Elements of Information Theory
[3]  
[Anonymous], 1999, ALL C COMM CONTR COM
[4]   COMPRESSIONS AND ISOPERIMETRIC-INEQUALITIES [J].
BOLLOBAS, B ;
LEADER, I .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1991, 56 (01) :47-62
[5]   The sic c function [J].
Guu, CJ .
DISCRETE MATHEMATICS, 2000, 213 (1-3) :163-167
[6]  
Harper LH., 1966, J COMBINATORIAL THEO, V1, P385, DOI DOI 10.1016/S0021-9800(66)80059-5
[7]  
Klotz J. G., 2012, ARXIV12077193
[8]  
O'Donnell R, 2008, ACM S THEORY COMPUT, P569
[9]   The regulatory network of E. coli metabolism as a Boolean dynamical system exhibits both homeostasis and flexibility of response [J].
Samal, Areejit ;
Jain, Sanjay .
BMC SYSTEMS BIOLOGY, 2008, 2