Modelling conditional covariance in the linear mixed model

被引:15
|
作者
Pan, Jianxin
MacKenzie, Gilbert [1 ]
机构
[1] Univ Limerick, Ctr Biostat, Limerick, Ireland
[2] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
关键词
Cholesky decomposition; conditional covariance; EM algorithm; joint mean-covariance models; linear mixed models; longitudinal data;
D O I
10.1177/1471082x0600700104
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide a data-driven method for modelling the conditional, within-subject covariance matrix arising in linear mixed models (Laird and Ware, 1982). Given an agreed structure for the between-subject covariance matrix we use a regression equation approach to model the within-subject covariance matrix. Using an EM algorithm we estimate all of the parameters in the model simultaneously and obtain analytical expressions for the standard errors. By re-analyzing Kenward's (1987) cattle data, we compare our new model with classical menu-selection-based modelling techniques, demonstrating its superiority using the Bayesian Information Criterion. We also conduct a simulation study, which confirms our observational findings. The paper extends our previous covariance modelling work (Pan and MacKenzie, 2003, 2006) to the conditional covariance space of the linear mixed model (LMM).
引用
收藏
页码:49 / 71
页数:23
相关论文
共 50 条
  • [41] Conditional covariance-based subtest selection for DIMTEST
    Froelich, Amy G.
    Habing, Brian
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2008, 32 (02) : 138 - 155
  • [42] The Use of the Linear Mixed Model in Human Genetics
    Dandine-Roulland, Claire
    Perdry, Herve
    HUMAN HEREDITY, 2015, 80 (04) : 196 - 206
  • [43] The t linear mixed model: model formulation, identifiability and estimation
    Regis, Marta
    Brini, Alberto
    Nooraee, Nazanin
    Haakma, Reinder
    van den Heuvel, Edwin R.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (05) : 2318 - 2342
  • [44] ARMA Cholesky factor models for the covariance matrix of linear models
    Lee, Keunbaik
    Baek, Changryong
    Daniels, Michael J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 115 : 267 - 280
  • [45] Mixtures of conditional mean- and covariance-structure models
    Arminger, G
    Stein, P
    Wittenberg, J
    PSYCHOMETRIKA, 1999, 64 (04) : 475 - 494
  • [46] Rates of convergence in conditional covariance matrix with nonparametric entries estimation
    Loubes, Jean-Michel
    Marteau, Clement
    Solis, Maikol
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (18) : 4536 - 4558
  • [47] Inference and Local Influence Assessment in a Multifactor Skew-Normal Linear Mixed Model
    Najafi, Zeinolabedin
    Zare, Karim
    Mahmoudi, Mohammad Reza
    Shokri, Soheil
    Mosavi, Amir
    MATHEMATICS, 2022, 10 (15)
  • [48] Mixtures of conditional mean- and covariance-structure models
    Gerhard Arminger
    Petra Stein
    Jörg Wittenberg
    Psychometrika, 1999, 64 : 475 - 494
  • [49] Generalized linear mixed model with bayesian rank likelihood
    Doroshenko, Lyubov
    Liseo, Brunero
    STATISTICAL METHODS AND APPLICATIONS, 2023, 32 (02) : 425 - 446
  • [50] The Generalized Linear Mixed Cluster-Weighted Model
    Ingrassia, Salvatore
    Punzo, Antonio
    Vittadini, Giorgio
    Minotti, Simona C.
    JOURNAL OF CLASSIFICATION, 2015, 32 (01) : 85 - 113