Modelling conditional covariance in the linear mixed model

被引:15
|
作者
Pan, Jianxin
MacKenzie, Gilbert [1 ]
机构
[1] Univ Limerick, Ctr Biostat, Limerick, Ireland
[2] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
关键词
Cholesky decomposition; conditional covariance; EM algorithm; joint mean-covariance models; linear mixed models; longitudinal data;
D O I
10.1177/1471082x0600700104
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide a data-driven method for modelling the conditional, within-subject covariance matrix arising in linear mixed models (Laird and Ware, 1982). Given an agreed structure for the between-subject covariance matrix we use a regression equation approach to model the within-subject covariance matrix. Using an EM algorithm we estimate all of the parameters in the model simultaneously and obtain analytical expressions for the standard errors. By re-analyzing Kenward's (1987) cattle data, we compare our new model with classical menu-selection-based modelling techniques, demonstrating its superiority using the Bayesian Information Criterion. We also conduct a simulation study, which confirms our observational findings. The paper extends our previous covariance modelling work (Pan and MacKenzie, 2003, 2006) to the conditional covariance space of the linear mixed model (LMM).
引用
收藏
页码:49 / 71
页数:23
相关论文
共 50 条
  • [31] Capturing between-tasks covariance and similarities using multivariate linear mixed models
    Navon, Aviv
    Rosset, Saharon
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (02): : 3821 - 3844
  • [32] Model Selection in Linear Mixed Models
    Mueller, Samuel
    Scealy, J. L.
    Welsh, A. H.
    STATISTICAL SCIENCE, 2013, 28 (02) : 135 - 167
  • [33] Selection Strategy for Covariance Structure of Random Effects in Linear Mixed-effects Models
    Zhang, Xinyu
    Liang, Hua
    Liu, Anna
    Ruppert, David
    Zou, Guohua
    SCANDINAVIAN JOURNAL OF STATISTICS, 2016, 43 (01) : 275 - 291
  • [34] Robust estimation of covariance parameters in partial linear model for longitudinal data
    Qin, Guoyou
    Zhu, Zhongyi
    Fung, Wing K.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (02) : 558 - 570
  • [35] Modelling growth and decline in lung function in Duchenne's muscular dystrophy with an augmented linear mixed effects model
    Scott, MA
    Norman, RG
    Berger, KI
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2004, 53 : 507 - 521
  • [36] A cautionary tale on the effects of different covariance structures in linear mixed effects modeling of fMRI data
    van der Horn, Harm Jan
    Erhardt, Erik B.
    Dodd, Andrew B.
    Nathaniel, Upasana
    Wick, Tracey V.
    Mcquaid, Jessica R.
    Ryman, Sephira G.
    Vakhtin, Andrei A.
    Meier, Timothy B.
    Mayer, Andrew R.
    HUMAN BRAIN MAPPING, 2024, 45 (07)
  • [37] Conditional covariance-based nonparametric multidimensionality assessment
    Stout, W
    Habing, B
    Douglas, J
    Kim, HR
    Roussos, L
    Zhang, JM
    APPLIED PSYCHOLOGICAL MEASUREMENT, 1996, 20 (04) : 331 - 354
  • [38] Conditional covariance structure of generalized compensatory multidimensional items
    Jinming Zhang
    William Stout
    Psychometrika, 1999, 64 : 129 - 152
  • [39] Modelling of covariance structures in generalised estimating equations for longitudinal data
    Ye, Huajun
    Pan, Jianxin
    BIOMETRIKA, 2006, 93 (04) : 927 - 941
  • [40] Conditional covariance structure of generalized compensatory multidimensional items
    Zhang, JM
    Stout, W
    PSYCHOMETRIKA, 1999, 64 (02) : 129 - 152