Modelling conditional covariance in the linear mixed model

被引:15
|
作者
Pan, Jianxin
MacKenzie, Gilbert [1 ]
机构
[1] Univ Limerick, Ctr Biostat, Limerick, Ireland
[2] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
关键词
Cholesky decomposition; conditional covariance; EM algorithm; joint mean-covariance models; linear mixed models; longitudinal data;
D O I
10.1177/1471082x0600700104
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide a data-driven method for modelling the conditional, within-subject covariance matrix arising in linear mixed models (Laird and Ware, 1982). Given an agreed structure for the between-subject covariance matrix we use a regression equation approach to model the within-subject covariance matrix. Using an EM algorithm we estimate all of the parameters in the model simultaneously and obtain analytical expressions for the standard errors. By re-analyzing Kenward's (1987) cattle data, we compare our new model with classical menu-selection-based modelling techniques, demonstrating its superiority using the Bayesian Information Criterion. We also conduct a simulation study, which confirms our observational findings. The paper extends our previous covariance modelling work (Pan and MacKenzie, 2003, 2006) to the conditional covariance space of the linear mixed model (LMM).
引用
收藏
页码:49 / 71
页数:23
相关论文
共 50 条
  • [1] A linear mixed model with temporal covariance structures in modelling catch per unit effort of Baltic herring
    Mikkonen, S.
    Rahikainen, M.
    Virtanen, J.
    Lehtonen, R.
    Kuikka, S.
    Ahvonen, A.
    ICES JOURNAL OF MARINE SCIENCE, 2008, 65 (09) : 1645 - 1654
  • [2] Flexible modelling of the covariance matrix in a linear random effects model
    Lesaffre, E
    Todem, D
    Verbeke, G
    Kenward, M
    BIOMETRICAL JOURNAL, 2000, 42 (07) : 807 - 822
  • [3] An R2 statistic for covariance model selection in the linear mixed model
    Jaeger, Byron C.
    Edwards, Lloyd J.
    Gurka, Matthew J.
    JOURNAL OF APPLIED STATISTICS, 2019, 46 (01) : 164 - 184
  • [4] Modeling of covariance structures of random effects and random errors in linear mixed models
    Fei, Yu
    Pan, Yating
    Chen, Yin
    Pan, Jianxin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (09) : 2748 - 2769
  • [5] Marginal and Conditional Multiple Inference for Linear Mixed Model Predictors
    Kramlinger, Peter
    Krivobokova, Tatyana
    Sperlich, Stefan
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (544) : 2344 - 2355
  • [6] Dynamic linear mixed models with ARMA covariance matrix
    Han, Eun-Jeong
    Lee, Keunbaik
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2016, 23 (06) : 575 - 585
  • [7] Conditional linear mixed models
    Verbeke, G
    Spiessens, B
    Lesaffre, E
    AMERICAN STATISTICIAN, 2001, 55 (01) : 25 - 34
  • [8] Modeling conditional covariance for mixed-asset portfolios
    Zhou, Jian
    ECONOMIC MODELLING, 2014, 40 : 242 - 249
  • [9] An alternative REML estimation of covariance matrices in linear mixed models
    Li, Erning
    Pourahmadi, Mohsen
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (04) : 1071 - 1077
  • [10] Survey of Models for Random Effects Covariance Matrix in Generalized Linear Mixed Model
    Kim, Jiyeong
    Lee, Keunbaik
    KOREAN JOURNAL OF APPLIED STATISTICS, 2015, 28 (02) : 211 - 219