Competition between reduction reaction and carbon deposition for CaSO4 oxygen carrier in chemical-looping combustion: A first-principle study and reaction equilibrium analysis

被引:12
作者
Hou, Fengxiao [1 ,2 ]
Jin, Jing [1 ,2 ]
Liu, Dunyu [1 ,2 ]
Kou, Xuesen [1 ,2 ]
Yang, Haoran [1 ,2 ]
Wang, Yongzhen [3 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
[2] Shanghai Key Lab Multiphase Flow & Heat Transfer, Shanghai 200093, Peoples R China
[3] Linyi Univ, Sch Civil Engn & Architecture, Linyi 276000, Shandong, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Chemical-looping combustion; Heterogeneous reaction; Carbon deposition; Kinetic analysis; Reaction equilibrium; DENSITY-FUNCTIONAL THEORY; CO2; CAPTURE; AB-INITIO; COAL; POWER; MECHANISM; DECOMPOSITION; PERFORMANCE; ADSORPTION; OXIDATION;
D O I
10.1016/j.surfin.2021.101314
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To understand the reaction mechanism of chemical looping combustion with calcium-based oxygen carrier, the competition mechanisms between reduction reaction and carbon deposition for CaSO4 oxygen carrier were calculated by density functional theory and simulated by chemical reaction equilibrium analysis. In this paper, the reaction paths of reduction reaction and carbon deposition at different CaSO4(010) surface outer oxygen content (100%, 75%, 50%, 25%) were studied, and the reversibility of the reaction was fully considered. Furthermore, based on the kinetic analysis of the transition state theory, the kinetic parameters of the elementary reaction were obtained. Moreover, the reaction equilibrium simulation revealed the competition of reactions under different conditions. The results show that the energy barriers of forward and reverse reactions decrease with the oxygen content decreasing on the CaSO4 (010) outer layer surface in the reduction reaction. Besides, the forward energy barriers at each stage are lower than the reverse energy. In the carbon deposition reaction, the energy barriers of the forward reaction are higher than the reverse reaction, and the energy barriers of the reverse reaction gradually increase with oxygen content decreasing. The kinetic analysis results show the ratelimiting steps of forward and reverse reaction in reduction reaction are 75% and 25% oxygen content stage. According to the reaction equilibrium, the conversion rate of CO oxidation to CO2 decreases with temperature increasing, and the conversion rate of carbon deposition increases. The rate of CO oxidation to CO2 increase and the occurrence of carbon deposition reaction decrease with oxygen carrier ratio increasing. Thus, when the oxygen carrier is insufficient or most of CaSO4 is reduced, the carbon deposition reaction occurs easily.
引用
收藏
页数:10
相关论文
共 41 条
  • [41] Comparison of carbon capture IGCC with chemical-looping combustion and with calcium-looping process driven by coal for power generation
    Zhu, Lin
    Jiang, Peng
    Fan, Junming
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2015, 104 : 110 - 124