Developability of Triangle Meshes

被引:64
作者
Stein, Oded [1 ]
Grinspun, Eitan [1 ]
Crane, Keenan [2 ]
机构
[1] Columbia Univ, 530 West 120th St, New York, NY 10027 USA
[2] Carnegie Mellon Univ, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2018年 / 37卷 / 04期
基金
美国国家科学基金会;
关键词
developable surface modeling; discrete differential geometry; digital geometry processing; SURFACE; SPACE;
D O I
10.1145/3197517.3201303
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Developable surfaces are those that can be made by smoothly bending flat pieces without stretching or shearing. We introduce a definition of developability for triangle meshes which exactly captures two key properties of smooth developable surfaces, namely flattenability and presence of straight ruling lines. This definition provides a starting point for algorithms in developable surface modeling-we consider a variational approach that drives a given mesh toward developable pieces separated by regular seam curves. Computation amounts to gradient descent on an energy with support in the vertex star, without the need to explicitly cluster patches or identify seams. We briefly explore applications to developable design and manufacturing.
引用
收藏
页数:14
相关论文
共 50 条
[21]   Toughening magnesium with gradient twin meshes [J].
Wang, Xin ;
Jiang, Lin ;
Cooper, Chase ;
Yu, Kehang ;
Zhang, Dalong ;
Rupert, Timothy J. ;
Mahajan, Subhash ;
Beyerlein, Irene J. ;
Lavernia, Enrique J. ;
Schoenung, Julie M. .
ACTA MATERIALIA, 2020, 195 :468-481
[22]   The Diamond Laplace for Polygonal and Polyhedral Meshes [J].
Bunge, A. ;
Botsch, M. ;
Alexa, M. .
COMPUTER GRAPHICS FORUM, 2021, 40 (05) :217-230
[23]   The focal geometry of circular and conical meshes [J].
Pottmann, Helmut ;
Wallner, Johannes .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2008, 29 (03) :249-268
[24]   Edge offset meshes in Laguerre geometry [J].
Pottmann, Helmut ;
Grohs, Philipp ;
Blaschitz, Bernhard .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 33 (01) :45-73
[25]   The focal geometry of circular and conical meshes [J].
Helmut Pottmann ;
Johannes Wallner .
Advances in Computational Mathematics, 2008, 29 :249-268
[26]   An algorithm of combined meshes generation and optimization [J].
Chen, WL ;
Zhai, JJ ;
Li, WG .
MSV '05: PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON MODELING, SIMULATION AND VISUALIZATION METHODS, 2005, :236-240
[27]   Unknotted Strand Routings of Triangulated Meshes [J].
Mohammed, Abdulmelik ;
Hajij, Mustafa .
DNA COMPUTING AND MOLECULAR PROGRAMMING, 2017, 10467 :46-63
[28]   Edge offset meshes in Laguerre geometry [J].
Helmut Pottmann ;
Philipp Grohs ;
Bernhard Blaschitz .
Advances in Computational Mathematics, 2010, 33 :45-73
[29]   Geometric modeling with conical meshes and developable surfaces [J].
Liu, Yang ;
Pottmann, Helmut ;
Wallner, Johannes ;
Yang, Yong-Liang ;
Wang, Wenping .
ACM TRANSACTIONS ON GRAPHICS, 2006, 25 (03) :681-689
[30]   Muscle wrapping on arbitrary meshes with the heat method [J].
Zarifi, Omar ;
Stavness, Ian .
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2017, 20 (02) :119-129