Developability of Triangle Meshes

被引:58
|
作者
Stein, Oded [1 ]
Grinspun, Eitan [1 ]
Crane, Keenan [2 ]
机构
[1] Columbia Univ, 530 West 120th St, New York, NY 10027 USA
[2] Carnegie Mellon Univ, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2018年 / 37卷 / 04期
基金
美国国家科学基金会;
关键词
developable surface modeling; discrete differential geometry; digital geometry processing; SURFACE; SPACE;
D O I
10.1145/3197517.3201303
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Developable surfaces are those that can be made by smoothly bending flat pieces without stretching or shearing. We introduce a definition of developability for triangle meshes which exactly captures two key properties of smooth developable surfaces, namely flattenability and presence of straight ruling lines. This definition provides a starting point for algorithms in developable surface modeling-we consider a variational approach that drives a given mesh toward developable pieces separated by regular seam curves. Computation amounts to gradient descent on an energy with support in the vertex star, without the need to explicitly cluster patches or identify seams. We briefly explore applications to developable design and manufacturing.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Developability-Driven Piecewise Approximations for Triangular Meshes
    Zhao, Zheng-Yu
    Fang, Qing
    Ouyang, Wenqing
    Zhang, Zheng
    Liu, Ligang
    Fu, Xiao-Ming
    ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (04):
  • [2] Decimation of triangle meshes
    Schroeder, William J.
    Zarge, Jonathan A.
    Lorensen, William E.
    Computer Graphics (ACM), 1992, 26 (02): : 65 - 70
  • [3] Remeshing triangle meshes with boundaries
    Wu, Y
    He, YJ
    Cai, HM
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 335 - 338
  • [4] Conformal equivalence of triangle meshes
    Springborn, Boris
    Schroeder, Peter
    Pinkall, Ulrich
    ACM TRANSACTIONS ON GRAPHICS, 2008, 27 (03):
  • [5] Connectivity compression for triangle meshes
    Zhan, HS
    Ding, ZG
    Zhou, LH
    ACTIVE MEDIA TECHNOLOGY, 2003, : 502 - 507
  • [6] Incremental subdivision for triangle meshes
    Pakdel, Hamid-Reza
    Samavati, Faramarz F.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2007, 3 (01) : 80 - 92
  • [7] Model Transduction for Triangle Meshes
    Wu, Huai-Yu
    Pan, Chun-Hong
    Zha, Hong-Bin
    Ma, Song-De
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2010, 25 (03) : 583 - 594
  • [8] Model Transduction for Triangle Meshes
    吴怀宇
    潘春洪
    查红彬
    马颂德
    JournalofComputerScience&Technology, 2010, 25 (03) : 583 - 594
  • [9] Constructing hierarchies for triangle meshes
    Gieng, TS
    Hamann, B
    Joy, KI
    Schussman, GL
    Trotts, IJ
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 1998, 4 (02) : 145 - 161
  • [10] Progressive Compression of Triangle Meshes
    Vidal, Vincent
    Dubouchet, Lucas
    Lavoue, Guillaume
    Alliez, Pierre
    IMAGE PROCESSING ON LINE, 2023, 13 : 1 - 21