A Positive Barzilai-Borwein-Like Stepsize and an Extension for Symmetric Linear Systems

被引:33
作者
Dai, Yu-Hong [1 ]
Al-Baali, Mehiddin [2 ]
Yang, Xiaoqi [3 ]
机构
[1] Chinese Acad Sci, State Key Lab Sci & Engn Comp, 55,ZhongGuanCun Donglu,POB 2719, Beijing 100190, Peoples R China
[2] Sultan Qaboos Univ, Dept Math & Stat, Muscat, Oman
[3] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
来源
NUMERICAL ANALYSIS AND OPTIMIZATION, NAO-III | 2015年 / 134卷
关键词
Unconstrained optimization; Barzilai and Borwein gradient method; Quadratic function; R-superlinear convergence; Condition number; QUADRATIC PROGRAMS; GRADIENT; ALGORITHMS;
D O I
10.1007/978-3-319-17689-5_3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Barzilai and Borwein (BB) gradient method has achieved a lot of attention since it performs much more better than the classical steepest descent method. In this paper, we analyze a positive BB-like gradient stepsize and discuss its possible uses. Specifically, we present an analysis of the positive stepsize for two-dimensional strictly convex quadratic functions and prove the R-superlinear convergence under some assumption. Meanwhile, we extend BB-like methods for solving symmetric linear systems and find that a variant of the positive stepsize is very useful in the context. Some useful discussions on the positive stepsize are also given.
引用
收藏
页码:59 / 75
页数:17
相关论文
共 20 条
[1]  
Al-Baali M., 2007, COMMUNICATION 0626, P26
[2]   2-POINT STEP SIZE GRADIENT METHODS [J].
BARZILAI, J ;
BORWEIN, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :141-148
[3]   Nonmonotone spectral projected gradient methods on convex sets [J].
Birgin, EG ;
Martínez, JM ;
Raydan, M .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (04) :1196-1211
[4]  
Cauchy A-L., 1847, Comp. Rend. Sci. Paris, V25, P536
[5]  
Cheng MH, 2012, PAC J OPTIM, V8, P15
[6]  
Dai Y. H., 1999, RES REPORT
[7]   A new gradient method with an optimal stepsize property [J].
Dai, YH ;
Yang, XQ .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2006, 33 (01) :73-88
[8]   New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds [J].
Dai, YH ;
Fletcher, R .
MATHEMATICAL PROGRAMMING, 2006, 106 (03) :403-421
[9]   On the asymptotic behaviour of some new gradient methods [J].
Dai, YH ;
Fletcher, R .
MATHEMATICAL PROGRAMMING, 2005, 103 (03) :541-559
[10]   Alternate step gradient method [J].
Dai, YH .
OPTIMIZATION, 2003, 52 (4-5) :395-415