Well-posedness and exponential decay estimates for a Korteweg-de Vries-Burgers equation with time-delay

被引:16
作者
Komornik, Vilmos [1 ]
Pignotti, Cristina [2 ]
机构
[1] Univ Strasbourg, Dept Math, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[2] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67010 Laquila, Italy
关键词
KdV-Burgers equation; Time delay; Well-posedness; Stabilization by feedback; BOUNDARY FEEDBACK STABILIZATION; ABSTRACT EVOLUTION-EQUATIONS; KDV EQUATION; STABILITY; SYSTEMS;
D O I
10.1016/j.na.2019.111646
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the KdV-Burgers equation and its linear version in presence of a delay feedback. We prove well-posedness of the models and exponential decay estimates under appropriate conditions on the damping coefficients. Our arguments rely on a Lyapunov functional approach combined with a step by step procedure and semigroup theory. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 23 条
[1]   DECAY OF SOLUTIONS OF SOME NONLINEAR-WAVE EQUATIONS [J].
AMICK, CJ ;
BONA, JL ;
SCHONBEK, ME .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 81 (01) :1-49
[2]   Two Approaches for the Stabilization of Nonlinear KdV Equation With Boundary Time-Delay Feedback [J].
Baudouin, Lucie ;
Crepeau, Emmanuelle ;
Valein, Julie .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (04) :1403-1414
[3]   Global well-posedness and exponential decay rates for a KdV-Burgers equation with indefinite damping [J].
Cavalcanti, M. M. ;
Domingos Cavalcanti, V. N. ;
Komornik, V. ;
Rodrigues, J. H. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (05) :1079-1100
[4]   Decay of Solutions to Damped Korteweg-de Vries Type Equation [J].
Cavalcanti, Marcelo M. ;
Domingos Cavalcanti, Valeria N. ;
Faminskii, Andrei ;
Natali, Fabio .
APPLIED MATHEMATICS AND OPTIMIZATION, 2012, 65 (02) :221-251
[5]   NOT ALL FEEDBACK STABILIZED HYPERBOLIC SYSTEMS ARE ROBUST WITH RESPECT TO SMALL TIME DELAYS IN THEIR FEEDBACKS [J].
DATKO, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (03) :697-713
[6]   AN EXAMPLE ON THE EFFECT OF TIME DELAYS IN BOUNDARY FEEDBACK STABILIZATION OF WAVE-EQUATIONS [J].
DATKO, R ;
LAGNESE, J ;
POLIS, MP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (01) :152-156
[7]   Boundary feedback stabilization by time delay for one-dimensional wave equations [J].
Gugat, Martin .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2010, 27 (02) :189-203
[8]   Distributed stabilization of Korteweg-de Vries-Burgers equation in the presence of input delay [J].
Kang, Wen ;
Fridman, Emilia .
AUTOMATICA, 2019, 100 :260-273
[9]  
KOMORNIK V, 1991, CR ACAD SCI I-MATH, V312, P841
[10]  
Komornik V., ARXIV180706445