EXISTENCE OF SOLUTIONS TO A REGULARIZED MODEL OF DYNAMIC FRACTURE

被引:94
作者
Larsen, Christopher J. [1 ]
Ortner, Christoph [2 ]
Suli, Endre [2 ]
机构
[1] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
[2] Univ Oxford, Math Inst, Oxford OX1 3LB, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Dynamic fracture mechanics; phase-field approximation; crack path; existence of solutions; convergence; energy balance; QUASI-STATIC EVOLUTION; BRITTLE-FRACTURE; APPROXIMATION; CONVERGENCE;
D O I
10.1142/S0218202510004520
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence and convergence results are proved for a regularized model of dynamic brittle fracture based on the Ambrosio-Tortorelli approximation. We show that the sequence of solutions to the time-discrete elastodynamics, proposed by Bourdin, Larsen & Richardson as a semidiscrete numerical model for dynamic fracture, converges, as the time-step approaches zero, to a solution of the natural time-continuous elastodynamics model, and that this solution satisfies an energy balance. We emphasize that these models do not specify crack paths a priori, but predict them, including such complicated behavior as kinking, crack branching, and so forth, in any spatial dimension.
引用
收藏
页码:1021 / 1048
页数:28
相关论文
共 18 条
[1]   APPROXIMATION OF FUNCTIONALS DEPENDING ON JUMPS BY ELLIPTIC FUNCTIONALS VIA GAMMA-CONVERGENCE [J].
AMBROSIO, L ;
TORTORELLI, VM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) :999-1036
[2]  
AMBROSIO L, 1995, GAKUTO INT SER MATH, V9, P1
[3]  
[Anonymous], 1920, The phenomena of Rupture and Flow in Solids
[4]  
[Anonymous], 1989, DIRECT METHODS CALCU
[5]   Numerical experiments in revisited brittle fracture [J].
Bourdin, B ;
Francfort, GA ;
Marigo, JJ .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2000, 48 (04) :797-826
[6]  
BOURDIN B, TIME DISCRETE UNPUB
[7]  
Bourdin B, 2007, INTERFACE FREE BOUND, V9, P411
[8]  
BURKE S, 2008, 16 OXMOS U OXF MATH
[9]   Quasistatic crack growth in nonlinear elasticity [J].
Dal Maso, G ;
Francfort, GA ;
Toader, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 176 (02) :165-225
[10]  
DALMASO G, 2002, ARCH RATIONAL MECH A, V89, P151