Genome characterization and CRISPR-Cas9 editing of a human neocentromere

被引:1
作者
Palazzo, Antonio [1 ]
Piccolo, Ilaria [1 ]
Minervini, Crescenzio Francesco [2 ]
Purgato, Stefania [3 ]
Capozzi, Oronzo [1 ]
D'Addabbo, Pietro [1 ]
Cumbo, Cosimo [2 ]
Albano, Francesco [2 ]
Rocchi, Mariano [1 ]
Catacchio, Claudia Rita [1 ]
机构
[1] Univ Bari Aldo Moro, Dept Biol, Bari, Italy
[2] Univ Bari Aldo Moro, Dept Emergency & Organ Transplantat DETO, Hematol & Stem Cell Transplantat Unit, Bari, Italy
[3] Univ Bologna, Dept Pharm & Biotechnol, Bologna, Italy
关键词
Neocentromere; CRISPR-Cas9; Long-read sequencing; Isochromosome; MARKER CHROMOSOME; CENTROMERE; EVOLUTIONARY; GENERATION; ISOCHROMOSOMES; REARRANGEMENTS; SATELLITE; DISEASE; CHILD; DNA;
D O I
10.1007/s00412-022-00779-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The maintenance of genome integrity is ensured by proper chromosome inheritance during mitotic and meiotic cell divisions. The chromosomal counterpart responsible for chromosome segregation to daughter cells is the centromere, at which the spindle apparatus attaches through the kinetochore. Although all mammalian centromeres are primarily composed of megabase-long repetitive sequences, satellite-free human neocentromeres have been described. Neocentromeres and evolutionary new centromeres have revolutionized traditional knowledge about centromeres. Over the past 20 years, insights have been gained into their organization, but in spite of these advancements, the mechanisms underlying their formation and evolution are still unclear. Today, through modern and increasingly accessible genome editing and long-read sequencing techniques, research in this area is undergoing a sudden acceleration. In this article, we describe the primary sequence of a previously described human chromosome 3 neocentromere and observe its possible evolution and repair results after a chromosome breakage induced through CRISPR-Cas9 technologies. Our data represent an exciting advancement in the field of centromere/neocentromere evolution and chromosome stability.
引用
收藏
页码:239 / 251
页数:13
相关论文
共 50 条
[31]   A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum [J].
Wang, Bo ;
Hu, Qitiao ;
Zhang, Yu ;
Shi, Ruilin ;
Chai, Xin ;
Liu, Zhe ;
Shang, Xiuling ;
Zhang, Yun ;
Wen, Tingyi .
MICROBIAL CELL FACTORIES, 2018, 17
[32]   Implications of CRISPR-Cas9 Genome Editing Methods in Atherosclerotic Cardiovascular Diseases [J].
Goharrizi, Mohammad Ali Sheikh Beig ;
Ghodsi, Saeed ;
Memarjafari, Mohammad Reza .
CURRENT PROBLEMS IN CARDIOLOGY, 2023, 48 (05)
[33]   Lipid nanoparticles: The game-changer in CRISPR-Cas9 genome editing [J].
Farsani, Arezoo Mohammadian ;
Mokhtari, Negin ;
Nooraei, Saghi ;
Bahrulolum, Howra ;
Akbari, Ali ;
Farsani, Zoheir Mohammadian ;
Khatami, Seyedmoein ;
Ebadi, Mozhdeh Sadat ;
Ahmadian, Gholamreza .
HELIYON, 2024, 10 (02)
[34]   The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells [J].
Lee, Ciaran M. ;
Cradick, Thomas J. ;
Bao, Gang .
MOLECULAR THERAPY, 2016, 24 (03) :645-654
[35]   Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system [J].
Cheong, Taek-Chin ;
Compagno, Mara ;
Chiarle, Roberto .
NATURE COMMUNICATIONS, 2016, 7
[36]   Trust in Science: CRISPR-Cas9 and the Ban on Human Germline Editing [J].
Guttinger, Stephan .
SCIENCE AND ENGINEERING ETHICS, 2018, 24 (04) :1077-1096
[37]   gRNA validation for wheat genome editing with the CRISPR-Cas9 system [J].
Arndell, Taj ;
Sharma, Niharika ;
Langridge, Peter ;
Baumann, Ute ;
Watson-Haigh, Nathan S. ;
Whitford, Ryan .
BMC BIOTECHNOLOGY, 2019, 19 (01)
[38]   Genome editing in Shiraia bambusicola using CRISPR-Cas9 system [J].
Deng, Huaxiang ;
Gao, Ruijie ;
Liao, Xiangru ;
Cai, Yujie .
JOURNAL OF BIOTECHNOLOGY, 2017, 259 :228-234
[39]   Decorating chromatin for enhanced genome editing using CRISPR-Cas9 [J].
Chen, Evelyn ;
Lin-Shiao, Enrique ;
Trinidad, Marena ;
Doost, Mohammad Saffari ;
Colognori, David ;
Doudna, Jennifer A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (49)
[40]   Development of CRISPR-Cas9 genome editing system in Talaromyces marneffei [J].
Zhang, Xiangmei ;
Hu, Xueyan ;
Jan, Saad ;
Rasheed, Syed Majid ;
Zhang, Yun ;
Du, Minghao ;
Yang, Ence .
MICROBIAL PATHOGENESIS, 2021, 154