Indecomposable modules of large rank over Cohen-Macaulay local rings

被引:2
作者
Hassler, Wolfgang [1 ]
Karr, Ryan
Klingler, Lee
Wiegand, Roger
机构
[1] Karl Franzens Univ Graz, Inst Math Wissenschaftliches Rech, A-8010 Graz, Austria
关键词
D O I
10.1090/S0002-9947-07-04226-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A commutative Noetherian local ring (R, m, k) is called Dedekind-like provided R is one-dimensional and reduced the integral closure (R) over bar is generated by at most 2 elements as an R-module, and m is the Jacobson radical of (R) over bar. If M is an indecomposable finitely generated module over a Dedekind-like ring R and if P is a minimal prime ideal of R, it follows from a classification theorem due to L. Klingler and L. Levy that M-P must be free of rank 0, 1 or 2. Now suppose (R, m, k) is a one-dimensional Cohen-Macaulay local ring that is not Dedekind-like, and let P-1,...,P-t be the minimal prime ideals of R. The main theorem in the paper asserts that, for each non-zero t-tuple (n(1),...,n(t)) of non-negative integers, there is an infinite family of pairwise non-isomorphic indecomposable finitely generated R-modules M satisfying M-Pi congruent to (R-Pi)((ni)) for each i.
引用
收藏
页码:1391 / 1406
页数:16
相关论文
共 13 条
[1]  
[Anonymous], 1986, CAMBRIDGE STUD ADV M
[2]  
Bass H., 1963, MATH Z, V82, P8, DOI DOI 10.1007/BF01112819
[3]  
Drozd J. A., 1967, IZV AKAD NAUK SSSR M, V31, P783
[4]   Large indecomposable modules over local rings [J].
Hassler, W. ;
Karr, R. ;
Klingler, L. ;
Wiegand, R. .
JOURNAL OF ALGEBRA, 2006, 303 (01) :202-215
[5]  
Klingler L, 2005, MEM AM MATH SOC, V176, pVII
[6]   Representation type of commutative noetherian rings II: Local tameness [J].
Klingler, L ;
Levy, LS .
PACIFIC JOURNAL OF MATHEMATICS, 2001, 200 (02) :387-483
[7]   Representation type of commutative noetherian rings I: Local wildness [J].
Klingler, L ;
Levy, LS .
PACIFIC JOURNAL OF MATHEMATICS, 2001, 200 (02) :345-386
[8]   Hypersurfaces of bounded Cohen-Macaulay type [J].
Leuschke, GJ ;
Wiegand, R .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 201 (1-3) :204-217
[9]   Local rings of bounded Cohen-Macaulay type [J].
Leuschke, GJ ;
Wiegand, R .
ALGEBRAS AND REPRESENTATION THEORY, 2005, 8 (02) :225-238
[10]   DEDEKIND-LIKE BEHAVIOR OF RINGS WITH 2-GENERATED IDEALS [J].
LEVY, LS ;
WIEGAND, R .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1985, 37 (01) :41-58