High-frequency and intrinsically stretchable polymer diodes

被引:238
作者
Matsuhisa, Naoji [1 ,2 ,3 ,4 ]
Niu, Simiao [1 ]
O'Neill, Stephen J. K. [1 ]
Kang, Jiheong [1 ]
Ochiai, Yuto [1 ]
Katsumata, Toru [1 ,5 ]
Wu, Hung-Chin [1 ]
Ashizawa, Minoru [1 ,6 ]
Wang, Ging-Ji Nathan [1 ]
Zhong, Donglai [1 ]
Wang, Xuelin [1 ,7 ]
Gong, Xiwen [1 ]
Ning, Rui [8 ]
Gong, Huaxin [1 ]
You, Insang [1 ]
Zheng, Yu [1 ]
Zhang, Zhitao [1 ]
Tok, Jeffrey B. -H. [1 ]
Chen, Xiaodong [2 ]
Bao, Zhenan [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, Innovat Ctr Flexible Devices iFLEX, Singapore, Singapore
[3] Keio Univ, Dept Elect & Elect Engn, Yokohama, Kanagawa, Japan
[4] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama, Japan
[5] Asahi Kasei Corp, Corp Res & Dev, Performance Mat Technol Ctr, Fuji, Shizuoka, Japan
[6] Tokyo Inst Technol, Dept Mat Sci & Engn, Tokyo, Japan
[7] Beihang Univ, Sch Med Sci & Engn, Beijing, Peoples R China
[8] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
基金
日本学术振兴会; 美国国家科学基金会;
关键词
SKIN ELECTRONICS; FABRICATION; LIGHTWEIGHT; DENSITY; FILMS;
D O I
10.1038/s41586-021-04053-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Skin-like intrinsically stretchable soft electronic devices are essential to realize next-generation remote and preventative medicine for advanced personal healthcare(1-4). The recent development of intrinsically stretchable conductors and semiconductors has enabled highly mechanically robust and skin-conformable electronic circuits or optoelectronic devices(2,5-10). However, their operating frequencies have been limited to less than 100 hertz, which is much lower than that required for many applications. Here we report intrinsically stretchable diodes-based on stretchable organic and nanomaterials-capable of operating at a frequency as high as 13.56 megahertz. This operating frequency is high enough for the wireless operation of soft sensors and electrochromic display pixels using radiofrequency identification in which the base-carrier frequency is 6.78 megahertz or 13.56 megahertz. This was achieved through a combination of rational material design and device engineering. Specifically, we developed a stretchable anode, cathode, semiconductor and current collector that can satisfy the strict requirements for high-frequency operation. Finally, we show the operational feasibility of our diode by integrating it with a stretchable sensor, electrochromic display pixel and antenna to realize a stretchable wireless tag. This work is an important step towards enabling enhanced functionalities and capabilities for skin-like wearable electronics.
引用
收藏
页码:246 / +
页数:9
相关论文
共 52 条
[1]   Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat [J].
Bandodkar, Amay J. ;
Gutruf, Philipp ;
Choi, Jungil ;
Lee, KunHyuck ;
Sekine, Yurina ;
Reeder, Jonathan T. ;
Jeang, William J. ;
Aranyosi, Alexander J. ;
Lee, Stephen P. ;
Model, Jeffrey B. ;
Ghaffari, Roozbeh ;
Su, Chun-Ju ;
Leshock, John P. ;
Ray, Tyler ;
Verrillo, Anthony ;
Thomas, Kyle ;
Krishnamurthi, Vaishnavi ;
Han, Seungyong ;
Kim, Jeonghyun ;
Krishnan, Siddharth ;
Hang, Tao ;
Rogers, John A. .
SCIENCE ADVANCES, 2019, 5 (01)
[2]   Flexible low-voltage high-frequency organic thin-film transistors [J].
Borchert, James W. ;
Zschieschang, Ute ;
Letzkus, Florian ;
Giorgio, Michele ;
Weitz, R. Thomas ;
Caironi, Mario ;
Burghartz, Joachim N. ;
Ludwigs, Sabine ;
Klauk, Hagen .
SCIENCE ADVANCES, 2020, 6 (21)
[3]   Air-stable, high current density, solution-processable, amorphous organic rectifying diodes (ORDs) for low-cost fabrication of flexible passive low frequency RFID tags [J].
Bose, I. ;
Tetzner, K. ;
Borner, K. ;
Bock, K. .
MICROELECTRONICS RELIABILITY, 2014, 54 (9-10) :1643-1647
[4]   Elastomeric Light Emitting Polymer Enhanced by Interpenetrating Networks [J].
Gao, Huier ;
Chen, Si ;
Liang, Jiajie ;
Pei, Qibing .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (47) :32504-32511
[5]   Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis [J].
Gao, Wei ;
Emaminejad, Sam ;
Nyein, Hnin Yin Yin ;
Challa, Samyuktha ;
Chen, Kevin ;
Peck, Austin ;
Fahad, Hossain M. ;
Ota, Hiroki ;
Shiraki, Hiroshi ;
Kiriya, Daisuke ;
Lien, Der-Hsien ;
Brooks, George A. ;
Davis, Ronald W. ;
Javey, Ali .
NATURE, 2016, 529 (7587) :509-+
[6]   Electrical and thermal analysis of frequency dependent filamentary switching in printed rectifying diodes [J].
Heljo, P. S. ;
Schmidt, C. ;
Klengel, R. ;
Majumdar, H. S. ;
Lupo, D. .
ORGANIC ELECTRONICS, 2015, 20 :69-75
[7]   Organic Diode Rectifiers Based on a High-Performance Conjugated Polymer for a Near-Field Energy-Harvesting Circuit [J].
Higgins, Stuart G. ;
Agostinelli, Tiziano ;
Markham, Steve ;
Whiteman, Robert ;
Sirringhaus, Henning .
ADVANCED MATERIALS, 2017, 29 (46)
[8]   Realization of Intrinsically Stretchable Organic Solar Cells Enabled by Charge-Extraction Layer and Photoactive Material Engineering [J].
Hsieh, Yun-Ting ;
Chen, Jung-Yao ;
Fukuta, Seijiro ;
Lin, Po-Chen ;
Higashihara, Tomoya ;
Chueh, Chu-Chen ;
Chen, Wen-Chang .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (25) :21712-21720
[9]   A High-Performance Solution-Processed Organic Photodetector for Near-Infrared Sensing [J].
Huang, Jianfei ;
Lee, Jaewon ;
Vollbrecht, Joachim ;
Brus, Viktor V. ;
Dixon, Alana L. ;
Cao, David Xi ;
Zhu, Ziyue ;
Du, Zhifang ;
Wang, Hengbin ;
Cho, Kilwon ;
Bazan, Guillermo C. ;
Thuc-Quyen Nguyen .
ADVANCED MATERIALS, 2020, 32 (01)
[10]   Three-dimensional integrated stretchable electronics [J].
Huang, Zhenlong ;
Hao, Yifei ;
Li, Yang ;
Hu, Hongjie ;
Wang, Chonghe ;
Nomoto, Akihiro ;
Pan, Taisong ;
Gu, Yue ;
Chen, Yimu ;
Zhang, Tianjiao ;
Li, Weixin ;
Lei, Yusheng ;
Kim, NamHeon ;
Wang, Chunfeng ;
Zhang, Lin ;
Ward, Jeremy W. ;
Maralani, Ayden ;
Li, Xiaoshi ;
Durstock, Michael F. ;
Pisano, Albert ;
Lin, Yuan ;
Xu, Sheng .
NATURE ELECTRONICS, 2018, 1 (08) :473-480