Study of early leaf senescence in Arabidopsis thaliana by quantitative proteomics using reciprocal 14N/15N Labeling and difference gel electrophoresis

被引:67
作者
Hebeler, Romano [1 ]
Oeljeklaus, Silke [1 ]
Reidegeld, Kai E. [1 ]
Eisenacher, Martin [1 ]
Stephan, Christian [1 ]
Sitek, Barbara [1 ]
Stuehler, Kai [1 ]
Meyer, Helmut E. [1 ]
Sturre, Marcel J. G. [2 ]
Dijkwel, Paul P. [2 ]
Warscheid, Bettina [1 ]
机构
[1] Ruhr Univ Bochum, Med Proteom Ctr, Zentrum Klin Forsch, D-44780 Bochum, Germany
[2] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, NL-9751 NN Haren, Netherlands
关键词
D O I
10.1074/mcp.M700340-MCP200
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Leaf senescence represents the final stage of leaf development and is associated with fundamental changes on the level of the proteome. For the quantitative analysis of changes in protein abundance related to early leaf senescence, we designed an elaborate double and reverse labeling strategy simultaneously employing fluorescent two-dimensional DIGE as well as metabolic N-15 labeling followed by MS. Reciprocal N-14/N-15 labeling of entire Arabidopsis thaliana plants showed that full incorporation of N-15 into the proteins of the plant did not cause any adverse effects on development and protein expression. A direct comparison of DIGE and N-15 labeling combined with MS showed that results obtained by both quantification methods correlated well for proteins showing low to moderate regulation factors. Nano HPLC/ESI-MS/MS analysis of 21 protein spots that consistently exhibited abundance differences in nine biological replicates based on both DIGE and MS resulted in the identification of 13 distinct proteins and protein subunits that showed significant regulation in Arabidopsis mutant plants displaying advanced leaf senescence. Ribulose 1,5-bisphosphate carboxylase/oxygenase large and three of its four small subunits were found to be down-regulated, which reflects the degradation of the photosynthetic machinery during leaf senescence. Among the proteins showing higher abundance in mutant plants were several members of the glutathione S-transferase family class phi and quinone reductase. Up-regulation of these proteins fits well into the context of leaf senescence since they are generally involved in the protection of plant cells against reactive oxygen species which are increasingly generated by lipid degradation during leaf senescence. With the exception of one glutathione S-transferase isoform, none of these proteins has been linked to leaf senescence before.
引用
收藏
页码:108 / 120
页数:13
相关论文
共 56 条
[51]   Inverse 15N-metabolic labeling/mass spectrometry for comparative proteomics and rapid identification of protein markers/targets [J].
Wang, YK ;
Ma, ZX ;
Quinn, DF ;
Fu, EW .
RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2002, 16 (14) :1389-1397
[52]   Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis [J].
Wu, CC ;
MacCoss, MJ ;
Howell, KE ;
Matthews, DE ;
Yates, JR .
ANALYTICAL CHEMISTRY, 2004, 76 (17) :4951-4959
[53]   Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF [J].
Wu, WW ;
Wang, GH ;
Baek, SJ ;
Shen, RF .
JOURNAL OF PROTEOME RESEARCH, 2006, 5 (03) :651-658
[54]   Identification of a novel gene HYS1/CPR5 that has a repressive role in the induction of leaf senescence and pathogen-defence responses in Arabidopsis thaliana [J].
Yoshida, S ;
Ito, M ;
Nishida, I ;
Watanabe, A .
PLANT JOURNAL, 2002, 29 (04) :427-437
[55]   Gene-expression analysis and network discovery using Genevestigator [J].
Zimmermann, P ;
Hennig, L ;
Gruissem, W .
TRENDS IN PLANT SCIENCE, 2005, 10 (09) :407-409
[56]   GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox [J].
Zimmermann, P ;
Hirsch-Hoffmann, M ;
Hennig, L ;
Gruissem, W .
PLANT PHYSIOLOGY, 2004, 136 (01) :2621-2632