Non model-based bioluminescence tomography using a machine-learning reconstruction strategy

被引:64
作者
Gao, Yuan [1 ,2 ]
Wang, Kun [1 ,2 ]
An, Yu [1 ,2 ]
Jiang, Shixin [1 ,3 ]
Meng, Hui [1 ,2 ]
Tian, Jie [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
[4] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100191, Peoples R China
来源
OPTICA | 2018年 / 5卷 / 11期
基金
中国国家自然科学基金;
关键词
LIGHT; REGISTRATION; ALGORITHM; ACCURACY;
D O I
10.1364/OPTICA.5.001451
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Bioluminescence tomography (BLT) is an effective noninvasive molecular imaging modality for in vivo tumor research in small animals. However, the quality of BLT reconstruction is limited by the simplified linear model of photon propagation. Here, we proposed a multilayer perceptron-based inverse problem simulation (IPS) method to improve the quality of in vivo tumor BLT reconstruction. Instead of solving the inverse problem of the simplified linear model of photon propagation, the IPS method directly fits the nonlinear relationship between an object surface optical density and its internal bioluminescent source. Both simulation and orthotopic glioma BLT reconstruction experiments demonstrated that IPS greatly improved the reconstruction quality compared with the conventional approach. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1451 / 1454
页数:4
相关论文
共 50 条
  • [31] Model-Based Deep Learning
    Shlezinger, Nir
    Eldar, Yonina C.
    FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2023, 17 (04): : 291 - 416
  • [32] 20 frames per second model-based reconstruction in cross-sectional optoacoustic tomography
    Ding, Lu
    Dean-Ben, Xose Luis
    Razansky, Daniel
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2017, 2017, 10064
  • [33] Machine-Learning Based Routing Pre-plan for SDN
    Chen, Fengqing
    Zheng, Xianghan
    MULTI-DISCIPLINARY TRENDS IN ARTIFICIAL INTELLIGENCE, MIWAI 2015, 2015, 9426 : 149 - 159
  • [34] A machine-learning approach for computation of fractional flow reserve from coronary computed tomography
    Itu, Lucian
    Rapaka, Saikiran
    Passerini, Tiziano
    Georgescu, Bogdan
    Schwemmer, Chris
    Schoebinger, Max
    Flohr, Thomas
    Sharma, Puneet
    Comaniciu, Dorin
    JOURNAL OF APPLIED PHYSIOLOGY, 2016, 121 (01) : 42 - 52
  • [35] Experimental Bioluminescence Tomography with Fully Parallel Radiative-transfer-based Reconstruction Framework
    Lu, Yujie
    Machado, Hidevaldo B.
    Douraghy, Ali
    Stout, David
    Herschman, Harvey
    Chatziioannou, Arion F.
    OPTICS EXPRESS, 2009, 17 (19): : 16681 - 16695
  • [36] Computed Tomography Imaging of a Hip Prosthesis Using Iterative Model-Based Reconstruction and Orthopaedic Metal Artefact Reduction: A Quantitative Analysis
    Wellenberg, Ruud H. H.
    Boomsma, Martijn F.
    van Osch, Jochen A. C., Jr.
    Vlassenbroek, Alain
    Milles, Julien
    Edens, Mireille A.
    Streekstra, Geert J.
    Slump, Cornelis H.
    Maas, Mario
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2016, 40 (06) : 971 - 978
  • [37] J-MoDL: Joint Model-Based Deep Learning for Optimized Sampling and Reconstruction
    Aggarwal, Hemant Kumar
    Jacob, Mathews
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2020, 14 (06) : 1151 - 1162
  • [38] Thermal-Sensor-Based Occupancy Detection for Smart Buildings Using Machine-Learning Methods
    Zhao, Hengyang
    Hua, Qi
    Chen, Hai-Bao
    Ye, Yaoyao
    Wang, Hai
    Tan, Sheldon X. -D.
    Tlelo-Cuautle, Esteban
    ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, 2018, 23 (04)
  • [39] Identification of protein functions using a machine-learning approach based on sequence-derived properties
    Lee, Bum Ju
    Shin, Moon Sun
    Oh, Young Joon
    Oh, Hae Seok
    Ryu, Keun Ho
    PROTEOME SCIENCE, 2009, 7
  • [40] Reconstruction Method for In Vivo Bioluminescence Tomography Based on the Split Bregman Iterative and Surrogate Functions
    Zhang, Shuang
    Wang, Kun
    Liu, Hongbo
    Leng, Chengcai
    Gao, Yuan
    Tian, Jie
    MOLECULAR IMAGING AND BIOLOGY, 2017, 19 (02) : 245 - 255