Spectral Norm of Circulant-Type Matrices

被引:26
|
作者
Bose, Arup [1 ]
Hazra, Rajat Subhra [1 ]
Saha, Koushik [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, Kolkata 700108, India
关键词
Large-dimensional random matrix; Eigenvalues; Toeplitz matrix; Hankel matrix; Circulant matrix; Symmetric circulant matrix; Reverse circulant matrix; k-circulant matrix; Spectral norm; Moving average process; Spectral density; Normal approximation; TOEPLITZ MATRICES; MAXIMUM; HANKEL;
D O I
10.1007/s10959-009-0257-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We first discuss the convergence in probability and in distribution of the spectral norm of scaled Toeplitz, circulant, reverse circulant, symmetric circulant, and a class of k-circulant matrices when the input sequence is independent and identically distributed with finite moments of suitable order and the dimension of the matrix tends to infinity. When the input sequence is a stationary two-sided moving average process of infinite order, it is difficult to derive the limiting distribution of the spectral norm, but if the eigenvalues are scaled by the spectral density, then the limits of the maximum of modulus of these scaled eigenvalues can be derived in most of the cases.
引用
收藏
页码:479 / 516
页数:38
相关论文
共 50 条
  • [1] Spectral Norm of Circulant-Type Matrices
    Arup Bose
    Rajat Subhra Hazra
    Koushik Saha
    Journal of Theoretical Probability, 2011, 24 : 479 - 516
  • [2] SPECTRAL NORM OF CIRCULANT TYPE MATRICES WITH HEAVY TAILED ENTRIES
    Bose, Arup
    Hazra, Rajat Subhra
    Saha, Koushik
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2010, 15 : 299 - 313
  • [3] Limiting spectral distribution of circulant type matrices with dependent inputs
    Bose, Arup
    Hazra, Rajat Subhra
    Saha, Koushik
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 2463 - 2491
  • [4] Poisson convergence of eigenvalues of circulant type matrices
    Bose, Arup
    Hazra, Rajat Subhra
    Saha, Koushik
    EXTREMES, 2011, 14 (04) : 365 - 392
  • [5] Poisson convergence of eigenvalues of circulant type matrices
    Arup Bose
    Rajat Subhra Hazra
    Koushik Saha
    Extremes, 2011, 14 : 365 - 392
  • [6] SPECTRAL NORMS OF CIRCULANT-TYPE MATRICES WITH BINOMIAL COEFFICIENTS AND HARMONIC NUMBERS
    Zhou, Jianwei
    Jiang, Zhaolin
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2014, 11 (05)
  • [7] EXPLICIT FORMULAE FOR SPECTRAL NORMS OF CIRCULANT-TYPE MATRICES WITH WELL-KNOWN ENTRIES
    Zhou, Jianwei
    Zhang, Jian
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2013, 29 (01): : 71 - 82
  • [8] THE SPECTRAL NORM OF A CIRCULANT MATRIX
    Merikoski, Jorma K.
    Haukkanen, Pentti
    Mattila, Mika
    Tossavainen, Timo
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2018, 40 (04): : 495 - 500
  • [9] CIRCULANT MATRICES: NORM, POWERS, AND POSITIVITY
    Lindner, Marko
    OPUSCULA MATHEMATICA, 2018, 38 (06) : 849 - 857
  • [10] Circulant type matrices with heavy tailed entries
    Bose, Arup
    Guha, Suman
    Hazra, Rajat Subhra
    Saha, Koushik
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (11) : 1706 - 1716