Forcing relations for homoclinic orbits of the Smale horseshoe map

被引:30
作者
Collins, P [1 ]
机构
[1] Ctr Wiskunde & Informat, NL-1090 GB Amsterdam, Netherlands
关键词
homoclinic orbit; forcing relation; Smale horseshoe; braid type;
D O I
10.1080/10586458.2005.10128909
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An important problem in the dynamics of surface homeomorphisms is determining the forcing relation between orbits. The forcing relation between periodic orbits can be computed using existing algorithms. Here we consider forcing relations between homoclinic orbits. We outline a general procedure for computing the forcing relation and apply this to compute the equivalence and forcing relations for homoclinic orbits of the Smale horseshoe map.
引用
收藏
页码:75 / 86
页数:12
相关论文
共 24 条
[1]   AN EXTENSION OF THE THEOREM OF MILNOR AND THURSTON ON THE ZETA-FUNCTIONS OF INTERVAL MAPS [J].
BALADI, V ;
RUELLE, D .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1994, 14 :621-632
[2]   TRAIN-TRACKS FOR SURFACE HOMEOMORPHISMS [J].
BESTVINA, M ;
HANDEL, M .
TOPOLOGY, 1995, 34 (01) :109-140
[3]   ROTATION SETS AND MONOTONE PERIODIC-ORBITS FOR ANNULUS HOMEOMORPHISMS [J].
BOYLAND, P .
COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (02) :203-213
[4]  
Boyland P., 1999, GEOMETRY TOPOLOGY DY, P17
[5]   Dynamics of surface diffeomorphisms relative to homoclinic and heteroclinic orbits [J].
Collins, P .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2004, 19 (01) :1-39
[6]   Symbolic dynamics from homoclinic tangles [J].
Collins, P .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (03) :605-617
[7]  
COLLINS P, 2005, IN PRESS DYNAM SYS
[8]  
COLLINS P, 2004, SOFTWARE PACKAGE TAN
[9]   Braid forcing and star-shaped train tracks [J].
de Carvalho, A ;
Hall, T .
TOPOLOGY, 2004, 43 (02) :247-287
[10]   The forcing relation for horseshoe braid types [J].
de Carvalho, A ;
Hall, T .
EXPERIMENTAL MATHEMATICS, 2002, 11 (02) :271-288