On a Class of Inverse Problems for a Parabolic Equation with Involution

被引:2
|
作者
Sarsenbi, Abdisalam A. [1 ,2 ]
机构
[1] Inst Math & Math Modeling, Alma Ata, Kazakhstan
[2] Auezov South Kazakhstan State Univ, Shymkent, Kazakhstan
来源
INTERNATIONAL CONFERENCE FUNCTIONAL ANALYSIS IN INTERDISCIPLINARY APPLICATIONS (FAIA2017) | 2017年 / 1880卷
关键词
BOUNDARY-VALUE-PROBLEMS; DIFFERENTIAL-EQUATION; TEMPERATURE; REFLECTION; OPERATOR; DENSITY;
D O I
10.1063/1.5000637
中图分类号
O59 [应用物理学];
学科分类号
摘要
A class of inverse problems for a heat equation with involution perturbation is considered using four different boundary conditions, namely, Dirichlet, Neumann, periodic and anti-periodic boundary conditions. Proved theorems on existence and uniqueness of solutions to these problems are presented. Solutions are obtained in the form of series expansion using a set of appropriate orthogonal basis for each problem. Convergence of the obtained solutions is also discussed.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] On a class of inverse problems for a heat equation with involution perturbation
    Al-Salti, Nasser
    Kirane, Mokhtar
    Torebek, Berikbol T.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (03): : 669 - 681
  • [2] An Inverse Problem for a Parabolic Equation with Involution
    B. Kh. Turmetov
    B. J. Kadirkulov
    Lobachevskii Journal of Mathematics, 2021, 42 : 3006 - 3015
  • [3] An Inverse Problem for a Parabolic Equation with Involution
    Turmetov, B. Kh
    Kadirkulov, B. J.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (12) : 3006 - 3015
  • [4] Numerical Solution to a Class of Inverse Problems for Parabolic Equation
    Rahimov A.B.
    Rahimov, A.B. (anar_r@yahoo.com), 2017, Springer Science and Business Media, LLC (53) : 392 - 402
  • [5] ONE CLASS OF INVERSE PROBLEMS FOR PARABOLIC EQUATION AND INTEGRAL GEOMETRY PROBLEMS
    KLIBANOV, MV
    DOKLADY AKADEMII NAUK SSSR, 1975, 222 (01): : 29 - 31
  • [6] Inverse Problems of Determination of the Time-Dependent Coefficient of a Parabolic Equation with Involution and Antiperiodicity Conditions
    Baranetskij Y.O.
    Demkiv I.I.
    Kaleniuk P.I.
    Journal of Mathematical Sciences, 2024, 282 (5) : 699 - 717
  • [7] INVERSE PROBLEMS FOR THE BEAM VIBRATION EQUATION WITH INVOLUTION
    Imanbetova, A. B.
    Sarsenbi, A. A.
    Seilbekov, B. N.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2023, 33 (03): : 452 - 466
  • [8] Inverse source problems for a wave equation with involution
    Tapdigoglu, R.
    Torebek, B. T.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2018, 91 (03): : 75 - 82
  • [9] On solvability of some inverse problems for a nonlocal fourth-order parabolic equation with multiple involution
    Turmetov, Batirkhan
    Karachik, Valery
    AIMS MATHEMATICS, 2024, 9 (03): : 6832 - 6849
  • [10] Inverse problems of determining an unknown depending on time coefficient for a parabolic equation with involution and periodicity conditions
    Baranetskij, Ya. O.
    Demkiv, I. I.
    Solomko, A. V.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2023, 15 (01) : 5 - 19