Remarkable strength of CoCrFeNi high-entropy alloy wires at cryogenic and elevated temperatures

被引:106
作者
Huo, Wenyi [1 ]
Fang, Feng [1 ]
Zhou, Hui [1 ]
Xie, Zonghan [2 ,4 ]
Shang, Jianku [3 ]
Jiang, Jianqing [1 ]
机构
[1] Southeast Univ, Jiangsu Key Lab Adv Metall Mat, Nanjing 211189, Jiangsu, Peoples R China
[2] Univ Adelaide, Sch Mech Engn, Adelaide, SA 5005, Australia
[3] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[4] Edith Cowan Univ, Sch Engn, Joondalup, WA 6027, Australia
基金
澳大利亚研究理事会;
关键词
High-entropy alloy; Cold drawing; Nano-twin; Mechanical properties; Elevated temperature; NANOCRYSTALLINE COPPER; TENSILE BEHAVIOR; RATE SENSITIVITY; DEFORMATION; DUCTILITY; SCALE; DISLOCATION; PLASTICITY; EVOLUTION; STRESS;
D O I
10.1016/j.scriptamat.2017.08.006
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
CoCrFeNi high-entropy alloy wires containing nano-sized twins were produced by heavy cold-drawing process. The alloy wires exhibit high tensile yield strength of 1.2 GPa, as well as a considerably high percentage elongation (i.e., ductility) of 13.6% at 223 K. Such cryogenic and room temperature properties were found to result from the blockage of dislocation glide by primary and secondary nano-scale twin boundaries and, to less extent, by other dislocations. The high level of strength remained with the increase of temperature up to 923 K. The deformation mechanism of the cold-drawn wires was observed to be governed by dislocation slip and dynamic recovery at elevated temperatures. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:125 / 128
页数:4
相关论文
共 35 条
[1]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[2]   Grain boundary formation by remnant dislocations from the de-twinning of thin nano-twins [J].
Cao, Y. ;
Wang, Y. B. ;
An, X. H. ;
Liao, X. Z. ;
Kawasaki, M. ;
Ringer, S. P. ;
Langdon, T. G. ;
Zhu, Y. T. .
SCRIPTA MATERIALIA, 2015, 100 :98-101
[3]   Achieving ultrafine grain size in Mg-Al-Zn alloy by friction stir processing [J].
Chang, C. I. ;
Du, X. H. ;
Huang, J. C. .
SCRIPTA MATERIALIA, 2007, 57 (03) :209-212
[4]   DEFORMATION TWINNING [J].
CHRISTIAN, JW ;
MAHAJAN, S .
PROGRESS IN MATERIALS SCIENCE, 1995, 39 (1-2) :1-157
[5]   Strength, strain-rate sensitivity and ductility of copper with nanoscale twins [J].
Dao, M. ;
Lu, L. ;
Shen, Y. F. ;
Suresh, S. .
ACTA MATERIALIA, 2006, 54 (20) :5421-5432
[6]   Strain hardening and heterogeneous deformation during twinning in Hadfield steel [J].
Efstathiou, C. ;
Sehitoglu, H. .
ACTA MATERIALIA, 2010, 58 (05) :1479-1488
[7]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[8]   Dislocation and twin substructure evolution during strain hardening of an Fe-22 wt.% Mn-0.6 wt.% C TWIP steel observed by electron channeling contrast imaging [J].
Gutierrez-Urrutia, I. ;
Raabe, D. .
ACTA MATERIALIA, 2011, 59 (16) :6449-6462
[9]   THE DEFORMATION AND AGEING OF MILD STEEL .3. DISCUSSION OF RESULTS [J].
HALL, EO .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION B, 1951, 64 (381) :747-753
[10]   Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering [J].
Huang, Hailong ;
Wu, Yuan ;
He, Junyang ;
Wang, Hui ;
Liu, Xiongjun ;
An, Ke ;
Wu, Wei ;
Lu, Zhaoping .
ADVANCED MATERIALS, 2017, 29 (30)