Impact of crystalline-amorphous interface on shock response of metallic glass Al90Sm10/crystalline Al nanolaminates

被引:4
作者
Mishra, Srishti [1 ]
Reddy, K. Vijay [1 ]
Pal, Snehanshu [1 ]
机构
[1] Natl Inst Technol Rourkela, Met & Mat Engn Dept, Rourkela 769008, India
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2021年 / 127卷 / 10期
关键词
Molecular dynamics; Shock wave; Single-crystal Al-Al90Sm10 metallic glass nanolaminates; Martensitic transformation; MOLECULAR-DYNAMICS; ALUMINUM; COMPRESSION; STRENGTH; TEMPERATURES; DEFORMATION; TRANSITION; PLASTICITY; COMPOSITE; YIELD;
D O I
10.1007/s00339-021-04929-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, structural evolution of single-crystal Al (SC)-metallic glass (MG) Al90Sm10 nanolaminate specimens under shock compression has been investigated using molecular dynamics simulations. Shock profile analysis of the SC-MG nanolaminate specimen reveals the presence of elastic precursor at lower piston velocity in the crystalline region of the nanolaminates eventuating due to plane-plane collision. Shock-induced martensitic phase transformation is apparent in the nanolaminate specimen at higher shock intensities. Rarefaction waves are observed to be generated at the crystalline-amorphous interface, which aid in stabilization of the transformed martensitic phase. The role of interface reverses with altering the direction of shockwave to induce from the metallic glass end of the nanolaminate. The attenuation of shockwave in the amorphous MG region and the absence of rarefaction waves at the interface impede the martensitic phase transformation. Icosahedral-like cluster < 0, 2, 8, 4 > is found to be most resistant to shockwave deformation as analyzed using Voronoi cluster analysis. Formation of shear transformation zones (STZs) plays a vital role in absorbing the shock in the metallic glass region of nanolaminate specimen.
引用
收藏
页数:13
相关论文
共 52 条
[1]   Shock wave propagation and spall failure in single crystal Mg at atomic scales [J].
Agarwal, Garvit ;
Dongare, Avinash M. .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (14)
[2]   SOME OBSERVATIONS OF DISCONTINUOUS YIELDING PHENOMENA IN COPPER NICKEL AND ALUMINIUM AFTER SHOCK LOADING [J].
APPLETON, AS ;
WADDINGTON, JS .
PHILOSOPHICAL MAGAZINE, 1965, 12 (116) :273-+
[3]   Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature [J].
Austin, Ryan A. .
JOURNAL OF APPLIED PHYSICS, 2018, 123 (03)
[4]  
Bergman R., 2017, U.S. Patent, Patent No. [9.696,122, 9696122]
[5]   On the role of Sm in solidification of Al-Sm metallic glasses [J].
Bokas, G. B. ;
Zhao, L. ;
Perepezko, J. H. ;
Szlufarska, I. .
SCRIPTA MATERIALIA, 2016, 124 :99-102
[6]   The shock response of aluminium foams [J].
Bourne, N. K. ;
Bennett, K. ;
Milne, A. M. ;
MacDonald, S. A. ;
Harrigan, J. J. ;
Millett, J. C. F. .
SCRIPTA MATERIALIA, 2008, 58 (02) :154-157
[7]   On the shock response of cubic metals [J].
Bourne, N. K. ;
Gray, G. T., III ;
Millett, J. C. F. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (09)
[8]   Atomic-level deformation of CuxZr100-x metallic glasses under shock loading [J].
Demaske, Brian J. ;
Wen, Peng ;
Phillpot, Simon R. ;
Spearot, Douglas E. .
JOURNAL OF APPLIED PHYSICS, 2018, 123 (21)
[9]  
Faken D., 1994, Computational Materials Science, V2, P279, DOI 10.1016/0927-0256(94)90109-0
[10]   Transition from elasticity to plasticity in Zr35Cu65 metallic glasses: A molecular dynamics study [J].
Feng, S. D. ;
Jiao, W. ;
Pan, S. P. ;
Qi, L. ;
Gao, W. ;
Wang, L. M. ;
Li, G. ;
Ma, M. Z. ;
Liu, R. P. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2015, 430 :94-98