A stable semi-discrete central scheme for the two-dimensional incompressible Euler equations

被引:3
|
作者
Levy, D [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
incompressible Euler equations; central schemes; maximum principle;
D O I
10.1093/imanum/dri004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a second-order, semi-discrete central-upwind scheme for the incompressible 2D Euler equations in the vorticity formulation. The reconstructed velocity field preserves an exact discrete incompressibility relation. We state a local maximum principle for a fully discrete version of the scheme and prove it using a convexity argument. We then show how similar convexity arguments can be used to prove that the scheme maps certain Orlicz spaces into themselves. The consequences of this result on the convergence of the scheme are discussed. Numerical simulations support the expected properties of the scheme.
引用
收藏
页码:507 / 522
页数:16
相关论文
共 50 条