A tighter upper bound for random MAX 2-SAT

被引:4
作者
Xu, XueLin [1 ,2 ]
Gao, ZongSheng [1 ,2 ]
Xu, Ke [3 ]
机构
[1] Beihang Univ, LMIB, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
[3] Beihang Univ, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
关键词
MAX; 2-SAT; Upper bound; First-moment argument; Computational complexity; ALGORITHM; SAT;
D O I
10.1016/j.ipl.2010.11.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a conjunctive normal form F with n variables and m =cn 2-clauses, it is interesting to study the maximum number max F of clauses satisfied by all the assignments of the variables (MAX 2-SAT). When c is sufficiently large, the upper bound of f (n, cn) = E(max F) of random MAX 2-SAT had been derived by the first-moment argument. In this paper, we provide a tighter upper bound (3/4)cn + g(c)cn also using the first-moment argument but correcting the error items for f (n.cn), and g(c)= (3/4) cos((1/3) x arccos((4In 2)/c - 1)) - 3/8 when considering the epsilon(3) error item. Furthermore, we extrapolate the region of the validity of the first-moment method is c > 2.4094 by analyzing the higher order error items. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:115 / 119
页数:5
相关论文
共 13 条
  • [1] The threshold for random k-SAT is 2k log 2-O(k)
    Achlioptas, D
    Peres, Y
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (04) : 947 - 973
  • [2] LINEAR-TIME ALGORITHM FOR TESTING THE TRUTH OF CERTAIN QUANTIFIED BOOLEAN FORMULAS
    ASPVALL, B
    PLASS, MF
    TARJAN, RE
    [J]. INFORMATION PROCESSING LETTERS, 1979, 8 (03) : 121 - 123
  • [3] Bansal N, 2000, LECT NOTES COMPUT SC, V1741, P247
  • [4] The scaling window of the 2-SAT transition
    Bollobás, B
    Borgs, C
    Chayes, JT
    Kim, JH
    Wilson, DB
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2001, 18 (03) : 201 - 256
  • [5] Random MAX SAT, random MAX CUT, and their phase transitions
    Coppersmith, D
    Gamarnik, D
    Hajiaghayi, M
    Sorkin, GB
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2004, 24 (04) : 502 - 545
  • [6] Garey M. R., 1976, Theoretical Computer Science, V1, P237, DOI 10.1016/0304-3975(76)90059-1
  • [7] Worst-case upper bounds for MAX-2-SAT with an application to MAX-CUT
    Gramm, J
    Hirsch, EA
    Niedermeier, R
    Rossmanith, P
    [J]. DISCRETE APPLIED MATHEMATICS, 2003, 130 (02) : 139 - 155
  • [8] Some optimal inapproximability results
    Håstad, J
    [J]. JOURNAL OF THE ACM, 2001, 48 (04) : 798 - 859
  • [9] New worst-case upper bounds for SAT
    Hirsch, EA
    [J]. JOURNAL OF AUTOMATED REASONING, 2000, 24 (04) : 397 - 420
  • [10] Hirsch EA, 2000, LECT NOTES COMPUT SC, V1770, P65