The physiological basis for contrast opponency in motion computation in Drosophila

被引:12
|
作者
Ramos-Traslosheros, Giordano [1 ,2 ,3 ]
Silies, Marion [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Dev Biol & Neurobiol, Mainz, Germany
[2] Univ Gottingen, Int Max Planck Res Sch Neurosci, Gottingen, Germany
[3] Univ Gottingen, Gottingen Grad Sch Neurosci Biophys & Mol Biosci, Gottingen, Germany
基金
欧洲研究理事会;
关键词
LATERAL GENICULATE-NUCLEUS; DIRECTION SELECTIVITY; SIMPLE CELLS; SYNAPTIC POTENTIALS; RECEPTIVE-FIELDS; BEHAVIORAL STATE; VISUAL-SYSTEM; INHIBITION; MODULATION; EXCITATION;
D O I
10.1038/s41467-021-24986-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In Drosophila, direction-selective neurons implement a mechanism of motion computation similar to cortical neurons, using contrast-opponent receptive fields with ON and OFF subfields. It is not clear how the presynaptic circuitry of direction-selective neurons in the OFF pathway supports this computation if all major inputs are OFF-rectified neurons. Here, we reveal the biological substrate for motion computation in the OFF pathway. Three interneurons, Tm2, Tm9 and CT1, provide information about ON stimuli to the OFF direction-selective neuron T5 across its receptive field, supporting a contrast-opponent receptive field organization. Consistent with its prominent role in motion detection, variability in Tm9 receptive field properties transfers to T5, and calcium decrements in Tm9 in response to ON stimuli persist across behavioral states, while spatial tuning is sharpened by active behavior. Together, our work shows how a key neuronal computation is implemented by its constituent neuronal circuit elements to ensure direction selectivity. The Drosophila visual system first computes motion in the dendrites of T4 and T5 neurons via a linear mechanism that uses ON and OFF information. Here, the authors show that the Tm9, Tm2, and CT1 neurons provide both ON and OFF information to direction-selective T5 cells in the OFF pathway.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Multilevel visual motion opponency in Drosophila
    Ammer, Georg
    Serbe-Kamp, Etienne
    Mauss, Alex S.
    Richter, Florian G.
    Fendl, Sandra
    Borst, Alexander
    NATURE NEUROSCIENCE, 2023, 26 (11) : 1894 - 1905
  • [2] Dynamic nonlinearities enable direction opponency in Drosophila elementary motion detectors
    Badwan, Bara A.
    Creamer, Matthew S.
    Zavatone-Veth, Jacob A.
    Clark, Damon A.
    NATURE NEUROSCIENCE, 2019, 22 (08) : 1318 - +
  • [3] The computation of directional selectivity in the Drosophila OFF motion pathway
    Gruntman, Eyal
    Romani, Sandro
    Reiser, Michael B.
    ELIFE, 2019, 8
  • [4] Motion opponency and transparency in the human middle temporal area
    Garcia, Javier O.
    Grossman, Emily D.
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2009, 30 (06) : 1172 - 1182
  • [5] Orientation Selectivity Sharpens Motion Detection in Drosophila
    Fisher, Yvette E.
    Silies, Marion
    Clandinin, Thomas R.
    NEURON, 2015, 88 (02) : 390 - 402
  • [6] Elementary Motion Detection in Drosophila: Algorithms and Mechanisms
    Yang, Helen H.
    Clandinin, Thomas R.
    ANNUAL REVIEW OF VISION SCIENCE, VOL 4, 2018, 4 : 143 - 163
  • [7] Neural mechanism of spatio-chromatic opponency in the Drosophila amacrine neurons
    Li, Yan
    Chen, Pei-Ju
    Lin, Tzu-Yang
    Ting, Chun-Yuan
    Muthuirulan, Pushpanathan
    Pursley, Randall
    Ilic, Marko
    Pirih, Primoz
    Drews, Michael S.
    Menon, Kaushiki P.
    Zinn, Kai G.
    Pohida, Thomas
    Borst, Alexander
    Lee, Chi-Hon
    CURRENT BIOLOGY, 2021, 31 (14) : 3040 - U134
  • [8] Direction Opponency, Not Quadrature, Is Key to the 1/4 Cycle Preference for Apparent Motion in the Motion Energy Model
    Heess, Nicolas
    Bair, Wyeth
    JOURNAL OF NEUROSCIENCE, 2010, 30 (34) : 11300 - 11304
  • [9] Defining the Computational Structure of the Motion Detector in Drosophila
    Clark, Damon A.
    Bursztyn, Limor
    Horowitz, Mark A.
    Schnitzer, Mark J.
    Clandinin, Thomas R.
    NEURON, 2011, 70 (06) : 1165 - 1177
  • [10] General features of the retinal connectome determine the computation of motion anticipation
    Johnston, Jamie
    Lagnado, Leon
    ELIFE, 2015, 5