Noncommutative manifolds from the Higgs sector of coincident D-branes

被引:1
作者
Isidro, JM [1 ]
机构
[1] UVEG, CSIC, Inst Fis Corpuscular, Valencia 46071, Spain
关键词
D-brane; C*-algebras; noncommutative manifolds;
D O I
10.1142/S0217732305017123
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Higgs sector of the low-energy physics of n coincident D-branes contains the necessary elements for constructing noncommutative manifolds. The coordinates orthogonal to the coincident branes, as well as their conjugate momenta, take values in the Lie algebra of the gauge group living inside the brane stack. In the limit when n -> infinity (and in the absence of orientifolds), this is the unitary Lie algebra u(infinity). Placing a smooth manifold K orthogonally to the stack of coincident D-branes, one can construct a noncommutative C*-algebra that provides a natural definition of a noncommutative partner for the manifold K.
引用
收藏
页码:841 / 850
页数:10
相关论文
共 23 条
[1]  
[Anonymous], 1999, LONDON MATH SOC LECT
[2]  
[Anonymous], 2000, ADV THEOR MATH PHYS, DOI DOI 10.4310/ATMP.2000.V4.N1.A3
[3]  
[Anonymous], 1998, JHEP, DOI DOI 10.1088/1126-6708/1998/07/006[HEP-TH/9805112
[4]   M theory as a matrix model: A conjecture [J].
Banks, T ;
Fischler, W ;
Shenker, SH ;
Susskind, L .
PHYSICAL REVIEW D, 1997, 55 (08) :5112-5128
[5]   The concept of a noncommutative Riemann surface [J].
Bertoldi, G ;
Isidro, JM ;
Matone, M ;
Pasti, P .
PHYSICS LETTERS B, 2000, 484 (3-4) :323-332
[6]   Non-commutative spaces in physics and mathematics [J].
Bigatti, D .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (17) :3403-3428
[7]   M-theory and Seiberg-Witten curves: orthogonal and symplectic groups [J].
Brandhuber, A ;
Sonnenschein, J ;
Theisen, S ;
Yankielowicz, S .
NUCLEAR PHYSICS B, 1997, 504 (1-2) :175-188
[8]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[9]  
Connes A., 1998, J HIGH ENERGY PHYS, V02, P003, DOI 10.1088/1126-6708/1998/02/003
[10]  
Freed D.S., HEPTH9907189