共 4 条
Circ-UQCRC2 aggravates lipopolysaccharide-induced injury in human bronchial epithelioid cells via targeting miR-495-3p/MYD88-mediated inflammatory response and oxidative stress
被引:12
|作者:
Zhang, Xuan
[1
]
Chen, Chunbao
[1
]
Li, Bei
[1
]
Lu, Wei
[1
]
机构:
[1] China Three Gorges Univ, Coll Clin Med Sci 1, Dept Pediat, 183 Yi Ling Rd, Yichang City 443003, Hubei, Peoples R China
关键词:
Infantile pneumonia;
LPS;
circ-UQCRC2;
miR-495-3p;
MYD88;
RNA;
EXPRESSION;
CANCER;
D O I:
10.1080/08916934.2021.1975273
中图分类号:
R392 [医学免疫学];
Q939.91 [免疫学];
学科分类号:
100102 ;
摘要:
Infantile pneumonia is a common inflammatory disease with the infections of various pathogens in lower respiratory tracts. Here, the role and working mechanism of circular RNA (circRNA) ubiquinol-cytochrome c reductase core protein 2 (circ-UQCRC2; hsa_circ_0038467) in infantile pneumonia were investigated. Cell viability, apoptosis, and inflammatory response were assessed by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, and enzyme-linked immunosorbent assay (ELISA). Cell oxidative stress was analyzed by measuring the production of malondialdehyde (MDA) and superoxide dismutase (SOD). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were performed to determine the expression of RNAs and proteins. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to confirm the interaction between microRNA-495-3p (miR-495-3p) and circ-UQCRC2 or myeloid differentiation primary response protein 88 (MYD88). Lipopolysaccharide (LPS) treatment suppressed the viability while induced the apoptosis, inflammation, and oxidative stress of 16HBE cells in a dose-dependent manner. LPS exposure dose-dependently up-regulated the expression of circ-UQCRC2 in 16HBE cells. Circ-UQCRC2 absence attenuated LPS-induced injury in 16HBE cells. miR-495-3p was a target of circ-UQCRC2, and circ-UQCRC2 silencing-mediated protective effects in LPS-induced 16HBE cells were partly reversed by anti-miR-495-3p. MYD88 was a target of miR-495-3p, and MYD88 overexpression partly counteracted miR-495-3p accumulation-mediated influences in 16HBE cells upon LPS exposure. Circ-UQCRC2 interference decreased the protein expression of MYD88 partly by up-regulating miR-495-3p in LPS-induced 16HBE cells. In conclusion, circ-UQCRC2 contributed to LPS-induced injury of 16HBE cells by targeting miR-495-3p/MYD88 signalling-mediated inflammatory response and oxidative stress.
引用
收藏
页码:483 / 492
页数:10
相关论文