Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes

被引:36
作者
Chernova, Ekaterina [1 ]
Petukhov, Dmitrii [1 ]
Boytsova, Olga [1 ,2 ]
Alentiev, Alexander [3 ]
Budd, Peter [4 ]
Yampolskii, Yuri [3 ]
Eliseev, Andrei [1 ]
机构
[1] Lomonosov Moscow State Univ, Dept Mat Sci, Moscow 119991, Russia
[2] Russian Acad Sci, Kurnakov Inst Gen & Inorgan Chem, Moscow 119991, Russia
[3] Russian Acad Sci, AV Topchiev Inst Petrochem Synth TIPS, Moscow 119991, Russia
[4] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England
基金
俄罗斯科学基金会;
关键词
INTRINSIC MICROPOROSITY; PERMEATION;
D O I
10.1038/srep31183
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
New composite membranes based on porous anodic alumina films and polymer of intrinsic microporosity (PIM-1) have been prepared using a spin-coating technique. According to scanning electron microscopy, partial penetration of polymer into the pores of alumina supports takes place giving rise to selective polymeric layers with fiber-like microstructure. Geometric confinement of rigid PIM-1 in the channels of anodic alumina causes reduction of small-scale mobility in polymeric chains. As a result, transport of permanent gases, such as CH4, becomes significantly hindered across composite membranes. Contrary, the transport of condensable gases (CO2, C4H10), did not significantly suffer from the confinement due to high solubility in the polymer matrix. This strategy enables enhancement of selectivity towards CO2 and C4H10 without significant loss of the membrane performance and seems to be prospective for drain and sweetening of natural gas.
引用
收藏
页数:8
相关论文
共 15 条
[1]   Gas Separation Membrane Materials: A Perspective [J].
Baker, Richard W. ;
Low, Bee Ting .
MACROMOLECULES, 2014, 47 (20) :6999-7013
[2]   Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity [J].
Budd, PM ;
Elabas, ES ;
Ghanem, BS ;
Makhseed, S ;
McKeown, NB ;
Msayib, KJ ;
Tattershall, CE ;
Wang, D .
ADVANCED MATERIALS, 2004, 16 (05) :456-+
[3]  
Chaukura N., 2015, AM J APPL CHEM, V3, P139, DOI DOI 10.11648/J.AJAC.20150303.17
[4]   Morphological modification of the surface of polymers by the replication of the structure of anodic aluminum oxide [J].
Eliseev, A. A. ;
Petukhov, D. I. ;
Buldakov, D. A. ;
Ivanov, R. P. ;
Napolskii, K. S. ;
Lukashin, A. V. ;
Tret'yakov, Yu D. .
JETP LETTERS, 2010, 92 (07) :453-456
[5]   Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1) [J].
Heuchel, Matthias ;
Fritsch, Detlev ;
Budd, Peter M. ;
McKeown, Neil B. ;
Hofmann, Dieter .
JOURNAL OF MEMBRANE SCIENCE, 2008, 318 (1-2) :84-99
[6]   Effect of Nanoconfinement on Polymer Dynamics: Surface Layers and Interphases [J].
Krutyeva, M. ;
Wischnewski, A. ;
Monkenbusch, M. ;
Willner, L. ;
Maiz, J. ;
Mijangos, C. ;
Arbe, A. ;
Colmenero, J. ;
Radulescu, A. ;
Holderer, O. ;
Ohl, M. ;
Richter, D. .
PHYSICAL REVIEW LETTERS, 2013, 110 (10)
[7]   Polymer dynamics in nanoconfinement: Interfaces and interphases [J].
Krutyeva, Margarita ;
Wischnewski, Andreas ;
Richter, Dieter .
QENS/WINS 2014 - 11TH INTERNATIONAL CONFERENCE ON QUASIELASTIC NEUTRON SCATTERING AND 6TH INTERNATIONAL WORKSHOP ON INELASTIC NEUTRON SPECTROMETERS, 2015, 83
[8]   Gas sorption and permeation in PIM-1 [J].
Li, Pei ;
Chung, T. S. ;
Paul, D. R. .
JOURNAL OF MEMBRANE SCIENCE, 2013, 432 :50-57
[9]   Physical aging of polymers of intrinsic microporosity: a SAXS/WAXS study [J].
McDermott, Amanda G. ;
Budd, Peter M. ;
McKeown, Neil B. ;
Colina, Coray M. ;
Runt, James .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (30) :11742-11752
[10]   Gas permeation through nanoporous membranes in the transitional flow region [J].
Petukhov, D. I. ;
Eliseev, A. A. .
NANOTECHNOLOGY, 2016, 27 (08)