Artificial Intelligence for Mental Health Care: Clinical Applications, Barriers, Facilitators, and Artificial Wisdom

被引:168
作者
Lee, Ellen E. [1 ,3 ,4 ]
Torous, John [6 ,7 ]
De Choudhury, Munmun [8 ]
Depp, Colin A. [1 ,3 ,4 ]
Graham, Sarah A. [1 ,3 ]
Kim, Ho-Cheol [5 ]
Paulus, Martin P. [9 ]
Krystal, John H. [3 ,10 ]
Jeste, Dilip, V [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept Psychiat, San Diego, CA 92103 USA
[2] Univ Calif San Diego, Dept Neurosci, San Diego, CA 92103 USA
[3] Univ Calif San Diego, Sam & Rose Stein Inst Res Aging, San Diego, CA 92103 USA
[4] VA San Diego Healthcare Syst, San Diego, CA USA
[5] IBM Res Almaden, AI & Cognit Software, San Jose, CA USA
[6] Beth Israel Deaconess Med Ctr, Dept Psychiat, Boston, MA 02215 USA
[7] Harvard Univ, Boston, MA 02115 USA
[8] Georgia Inst Technol, Sch Interact Comp, Atlanta, GA 30332 USA
[9] Laureate Inst Brain Res, Tulsa, OK USA
[10] Yale Univ, Dept Psychiat, New Haven, CT USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
POSTTRAUMATIC-STRESS-DISORDER; LEARNING APPROACH; BIPOLAR DISORDER; MACHINE; PREDICTION; PSYCHOSIS; RISK; PSYCHIATRY; CLASSIFICATION; IDENTIFICATION;
D O I
10.1016/j.bpsc.2021.02.001
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Artificial intelligence (AI) is increasingly employed in health care fields such as oncology, radiology, and dermatology. However, the use of AI in mental health care and neurobiological research has been modest. Given the high morbidity and mortality in people with psychiatric disorders, coupled with a worsening shortage of mental health care providers, there is an urgent need for AI to help identify high-risk individuals and provide interventions to prevent and treat mental illnesses. While published research on AI in neuropsychiatry is rather limited, there is a growing number of successful examples of AI's use with electronic health records, brain imaging, sensor-based monitoring systems, and social media platforms to predict, classify, or subgroup mental illnesses as well as problems such as suicidality. This article is the product of a study group held at the American College of Neuropsychopharmacology conference in 2019. It provides an overview of AI approaches in mental health care, seeking to help with clinical diagnosis, prognosis, and treatment, as well as clinical and technological challenges, focusing on multiple illustrative publications. Although AI could help redefine mental illnesses more objectively, identify them at a prodromal stage, personalize treatments, and empower patients in their own care, it must address issues of bias, privacy, transparency, and other ethical concerns. These aspirations reflect human wisdom, which is more strongly associated than intelligence with individual and societal well-being. Thus, the future AI or artificial wisdom could provide technology that enables more compassionate and ethically sound care to diverse groups of people.
引用
收藏
页码:856 / 864
页数:9
相关论文
共 50 条
[21]   Artificial intelligence in clinical research of cancers [J].
Shao, Dan ;
Dai, Yinfei ;
Li, Nianfeng ;
Cao, Xuqing ;
Zhao, Wei ;
Cheng, Li ;
Rong, Zhuqing ;
Huang, Lan ;
Wang, Yan ;
Zhao, Jing .
BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
[22]   Monitoring performance of clinical artificial intelligence in health care: a scoping review [J].
Andersen, Eline Sandvig ;
Birk-Korch, Johan Baden ;
Hansen, Rasmus Sogaard ;
Fly, Line Haugaard ;
Rottger, Richard ;
Arcani, Diana Maria Cespedes ;
Brasen, Claus Lohman ;
Brandslund, Ivan ;
Madsen, Jonna Skov .
JBI EVIDENCE SYNTHESIS, 2024, 22 (12) :2423-2446
[23]   Artificial intelligence in spine care: current applications and future utility [J].
Hornung, Alexander L. ;
Hornung, Christopher M. ;
Mallow, G. Michael ;
Barajas, J. Nicolas ;
Rush, Augustus, III ;
Sayari, Arash J. ;
Galbusera, Fabio ;
Wilke, Hans-Joachim ;
Colman, Matthew ;
Phillips, Frank M. ;
An, Howard S. ;
Samartzis, Dino .
EUROPEAN SPINE JOURNAL, 2022, 31 (08) :2057-2081
[24]   Applications of Artificial Intelligence to Obesity Research: Scoping Review of Methodologies [J].
An, Ruopeng ;
Shen, Jing ;
Xiao, Yunyu .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2022, 24 (12)
[25]   Applications of artificial intelligence in radiophysics [J].
Li, Cuihua ;
Liu, Hongyan ;
Li, Peilin ;
He, Jia ;
Tian, Xiufang ;
Gao, Wei .
JOURNAL OF CANCER RESEARCH AND THERAPEUTICS, 2021, 17 (07) :1603-1607
[26]   Applications of Artificial Intelligence in Thrombocytopenia [J].
Elshoeibi, Amgad M. ;
Ferih, Khaled ;
Elsabagh, Ahmed Adel ;
Elsayed, Basel ;
Elhadary, Mohamed ;
Marashi, Mahmoud ;
Wali, Yasser ;
Al-Rasheed, Mona ;
Al-Khabori, Murtadha ;
Osman, Hani ;
Yassin, Mohamed .
DIAGNOSTICS, 2023, 13 (06)
[27]   Artificial Intelligence in Nephrology: Clinical Applications and Challenges [J].
Singh, Prabhat ;
Goyal, Lokesh ;
Mallick, Deobrat C. ;
Surani, Salim R. ;
Kaushik, Nayanjyoti ;
Chandramohan, Deepak ;
Simhadri, Prathap K. .
KIDNEY MEDICINE, 2025, 7 (01)
[28]   Applications of artificial intelligence in clinical laboratory genomics [J].
Aradhya, Swaroop ;
Facio, Flavia M. ;
Metz, Hillery ;
Manders, Toby ;
Colavin, Alexandre ;
Kobayashi, Yuya ;
Nykamp, Keith ;
Johnson, Britt ;
Nussbaum, Robert L. .
AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS, 2023, 193 (03)
[29]   Clinical applications of artificial intelligence in liver imaging [J].
Yamada, Akira ;
Kamagata, Koji ;
Hirata, Kenji ;
Ito, Rintaro ;
Nakaura, Takeshi ;
Ueda, Daiju ;
Fujita, Shohei ;
Fushimi, Yasutaka ;
Fujima, Noriyuki ;
Matsui, Yusuke ;
Tatsugami, Fuminari ;
Nozaki, Taiki ;
Fujioka, Tomoyuki ;
Yanagawa, Masahiro ;
Tsuboyama, Takahiro ;
Kawamura, Mariko ;
Naganawa, Shinji .
RADIOLOGIA MEDICA, 2023, 128 (06) :655-667
[30]   Artificial intelligence enabled applications in kidney disease [J].
Chaudhuri, Sheetal ;
Long, Andrew ;
Zhang, Hanjie ;
Monaghan, Caitlin ;
Larkin, John W. ;
Kotanko, Peter ;
Kalaskar, Shashi ;
Kooman, Jeroen P. ;
van der Sande, Frank M. ;
Maddux, Franklin W. ;
Usvyat, Len A. .
SEMINARS IN DIALYSIS, 2021, 34 (01) :5-16