On the Laplacian coefficients of bicyclic graphs

被引:30
作者
He, Chang-Xiang [1 ]
Shan, Hai-Ying [2 ]
机构
[1] Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[2] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Bicyclic graph; Characteristic polynomial; Laplacian coefficients; TREES;
D O I
10.1016/j.disc.2010.08.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph of order n and let P(G, x) = Sigma(n)(k=0)(-1)(k)c(k)x(n-k) be the characteristic polynomial of its Laplacian matrix. Generalizing the approach in [D. Stevanovic, A. Ilic, On the Laplacian coefficients of unicyclic graphs, Linear Algebra and its Applications 430 (2009) 2290-2300.] on graph transformations, we show that among all bicyclic graphs of order n, the kth coefficient c(k) is smallest when the graph is B-n (obtained from C-4 by adding one edge connecting two non-adjacent vertices and adding n 4 pendent vertices attached to the vertex of degree 3). (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:3404 / 3412
页数:9
相关论文
共 16 条
[1]  
Gutman I, 2001, ALGEBRAIC COMBINATORICS AND APPLICATIONS, P196
[2]  
Gutman I., 2003, Bulletin: Classe des Sciences Mathematiques et Naturelles. Sciences Mathematiques, V127, P31, DOI DOI 10.2298/BMAT0328031G
[3]  
Gutman I., 1978, Ber. Math. Statist. Sekt. Forschungsz Graz., V103, DOI [DOI 10.1016/J.LAA.2004.02.038, DOI 10.1088/1742-5468/2008/10/P10008]
[4]   On the Laplacian spectral radii of bicyclic graphs [J].
He, Chang-Xiang ;
Shao, Jia-Yu ;
He, Jin-Ling .
DISCRETE MATHEMATICS, 2008, 308 (24) :5981-5995
[5]   Trees with minimal Laplacian coefficients [J].
Ilic, Aleksandar .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (08) :2776-2783
[6]   On the ordering of trees by the Laplacian coefficients [J].
Ilic, Aleksandar .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (11) :2203-2212
[7]   Laplacian coefficients of trees with given number of leaves or vertices of degree two [J].
Ilic, Aleksandar ;
Ilic, Milovan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (11) :2195-2202
[8]  
Kelmans A. K., 1974, Journal of Combinatorial Theory, Series B, V16, P197, DOI 10.1016/0095-8956(74)90065-3
[9]  
Liu J, 2008, MATCH-COMMUN MATH CO, V59, P355
[10]  
MERRIS R., 1995, Linear Multilinear Algebra, V39, P19