Path integral for non-paraxial optics

被引:7
|
作者
Braidotti, Maria Chiara [1 ,2 ,10 ]
Conti, Claudio [2 ,3 ]
Faizal, Mir [4 ,5 ]
Dey, Sanjib [6 ]
Alasfar, Lina [7 ,11 ]
Alsaleh, Salwa [8 ]
Ashour, Amani [9 ]
机构
[1] Univ Aquila, Dept Phys & Chem Sci, Via Vetoio 10, I-67010 Laquila, Italy
[2] Natl Res Council ISC CNR, Inst Complex Syst, Via Taurini 19, I-00185 Rome, Italy
[3] Univ Sapienza, Dept Phys, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[4] Univ British Columbia Okanagan, Irving K Barber Sch Arts & Sci, 3333 Univ Way, Kelowna, BC V1V 1V7, Canada
[5] Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 3M4, Canada
[6] Indian Inst Sci Educ & Res Mohali, Dept Phys Sci, Sect 81, Sas Nagar 140306, Manauli, India
[7] Univ Clermont Auvergne, 4,Ave Blaise Pascal, F-63178 Aubire, France
[8] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
[9] Damascus Univ, Fac Sci, Math Dept, Damascus, Syria
[10] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland
[11] Max Planck Inst Nucl Phys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
关键词
GENERALIZED UNCERTAINTY PRINCIPLE; HAWKING RADIATION; LENGTH; ANALOG; SOLITONS; EQUATION; SPACE; PHASE;
D O I
10.1209/0295-5075/124/44001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we have constructed the Feynman path integral method for non-paraxial optics. This is done by using the mathematical analogy between a non-paraxial optical system and the generalized Schrodinger equation deformed by the existence a minimal measurable length. Using this analogy, we investigated the consequences of a minimal length in this optical system. This path integral has been used to obtain instanton solution for such an optical system. Moreover, the Berry phase of this optical system has been investigated. These results may disclose a new way to use the path integral approach in optics. Furthermore, as such systems with an intrinsic minimal length have been studied in quantum gravity, the ultra-focused optical pulses can be used as an optical analog of quantum gravity. Copyright (C) EPLA, 2018.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Gravitational path integral from the T2 deformation
    Belin, Alexandre
    Lewkowycz, Aitor
    Sarosi, Gabor
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (09)
  • [42] Linked cluster expansion of the many-body path integral
    Bhardwaj, Anish
    Manousakis, Efstratios
    PHYSICAL REVIEW B, 2019, 100 (17)
  • [43] Path integral for (2+1)-dimensional Shape Dynamics
    Gonzalez, A.
    Ocampo, H.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (12):
  • [44] Path Integral Formulation of Fractionally Perturbed Lagrangian Oscillators on Fractal
    El-Nabulsi, Rami Ahmad
    JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (06) : 1617 - 1640
  • [45] Coherent states and a path integral for the relativistic linear singular oscillator
    Nagiyev, S. M.
    Jafarov, E. I.
    Efendiyev, M. Y.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (02) : 315 - 318
  • [46] Probing anharmonic phonons by quantum correlators: A path integral approach
    Morresi, T.
    Paulatto, L.
    Vuilleumier, R.
    Casula, M.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (22):
  • [47] Path integral and spectral representations for supersymmetric Dirac-Hamiltonians
    Junker, G.
    Inomata, A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (05)
  • [48] Path-integral Monte Carlo study of asymmetric quantum quadrupolar rotors with fourth-order propagators
    Park, Sungjin
    Shin, Hyeondeok
    Kwon, Yongkyung
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2012, 61 (04) : 513 - 517
  • [49] Proper time path integrals for gravitational waves: an improved wave optics framework
    Braga, Ginevra
    Garoffolo, Alice
    Ricciardone, Angelo
    Bartolo, Nicola
    Matarrese, Sabino
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (11):
  • [50] Nonequilibrium transport in quantum impurity models: exact path integral simulations
    Segal, Dvira
    Millis, Andrew J.
    Reichman, David R.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (32) : 14378 - 14386