Path integral for non-paraxial optics

被引:7
|
作者
Braidotti, Maria Chiara [1 ,2 ,10 ]
Conti, Claudio [2 ,3 ]
Faizal, Mir [4 ,5 ]
Dey, Sanjib [6 ]
Alasfar, Lina [7 ,11 ]
Alsaleh, Salwa [8 ]
Ashour, Amani [9 ]
机构
[1] Univ Aquila, Dept Phys & Chem Sci, Via Vetoio 10, I-67010 Laquila, Italy
[2] Natl Res Council ISC CNR, Inst Complex Syst, Via Taurini 19, I-00185 Rome, Italy
[3] Univ Sapienza, Dept Phys, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[4] Univ British Columbia Okanagan, Irving K Barber Sch Arts & Sci, 3333 Univ Way, Kelowna, BC V1V 1V7, Canada
[5] Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 3M4, Canada
[6] Indian Inst Sci Educ & Res Mohali, Dept Phys Sci, Sect 81, Sas Nagar 140306, Manauli, India
[7] Univ Clermont Auvergne, 4,Ave Blaise Pascal, F-63178 Aubire, France
[8] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
[9] Damascus Univ, Fac Sci, Math Dept, Damascus, Syria
[10] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland
[11] Max Planck Inst Nucl Phys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
关键词
GENERALIZED UNCERTAINTY PRINCIPLE; HAWKING RADIATION; LENGTH; ANALOG; SOLITONS; EQUATION; SPACE; PHASE;
D O I
10.1209/0295-5075/124/44001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we have constructed the Feynman path integral method for non-paraxial optics. This is done by using the mathematical analogy between a non-paraxial optical system and the generalized Schrodinger equation deformed by the existence a minimal measurable length. Using this analogy, we investigated the consequences of a minimal length in this optical system. This path integral has been used to obtain instanton solution for such an optical system. Moreover, the Berry phase of this optical system has been investigated. These results may disclose a new way to use the path integral approach in optics. Furthermore, as such systems with an intrinsic minimal length have been studied in quantum gravity, the ultra-focused optical pulses can be used as an optical analog of quantum gravity. Copyright (C) EPLA, 2018.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] World-Line Path Integral for the Propagator Expressed as an Ordinary Integral: Concept and Applications
    Padmanabhan, T.
    FOUNDATIONS OF PHYSICS, 2021, 51 (02)
  • [32] Semiclassical Path Integral Calculation of Nonlinear Optical Spectroscopy
    Provazza, Justin
    Segatta, Francesco
    Garavelli, Marco
    Coker, David F.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (02) : 856 - 866
  • [33] Quantum corrections from a path integral over reparametrizations
    Makeenko, Yuri
    Olesen, Poul
    PHYSICAL REVIEW D, 2010, 82 (04):
  • [34] Feynman's path integral and mutually unbiased bases
    Tolar, J.
    Chadzitaskos, G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (24)
  • [35] Collapse-revival of entanglement in a non-commutative harmonic oscillator revealed via coherent states and path integral
    Madouri, Fethi
    Merdaci, Abdeldjalil
    Sbeouelji, Tarek
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2023, 78 (01): : 55 - 66
  • [36] Path to meter class single crystal silicon (SCSi) space optics
    McCarter, Douglas R.
    ADVANCED OPTICAL TECHNOLOGIES, 2012, 1 (1-2) : 91 - 96
  • [37] Metasurface optics for on-demand polarization transformations along the optical path
    Dorrah, Ahmed H.
    Rubin, Noah A.
    Zaidi, Aun
    Tamagnone, Michele
    Capasso, Federico
    NATURE PHOTONICS, 2021, 15 (04) : 287 - 296
  • [38] The Hawking Radiation in Massive Gravity: Path Integral and the Bogoliubov Method
    Arraut, Ivan
    Segovia, Carlos
    Rosado, Wilson
    UNIVERSE, 2023, 9 (05)
  • [39] Path integral solution for Dirac particle in a constant electric field
    Boudiaf, N.
    Merdaci, A.
    Chetouani, L.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (01)
  • [40] Permutation blocking path integral Monte Carlo: a highly efficient approach to the simulation of strongly degenerate non-ideal fermions
    Dornheim, Tobias
    Groth, Simon
    Filinov, Alexey
    Bonitz, Michael
    NEW JOURNAL OF PHYSICS, 2015, 17