Path integral for non-paraxial optics

被引:7
|
作者
Braidotti, Maria Chiara [1 ,2 ,10 ]
Conti, Claudio [2 ,3 ]
Faizal, Mir [4 ,5 ]
Dey, Sanjib [6 ]
Alasfar, Lina [7 ,11 ]
Alsaleh, Salwa [8 ]
Ashour, Amani [9 ]
机构
[1] Univ Aquila, Dept Phys & Chem Sci, Via Vetoio 10, I-67010 Laquila, Italy
[2] Natl Res Council ISC CNR, Inst Complex Syst, Via Taurini 19, I-00185 Rome, Italy
[3] Univ Sapienza, Dept Phys, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[4] Univ British Columbia Okanagan, Irving K Barber Sch Arts & Sci, 3333 Univ Way, Kelowna, BC V1V 1V7, Canada
[5] Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 3M4, Canada
[6] Indian Inst Sci Educ & Res Mohali, Dept Phys Sci, Sect 81, Sas Nagar 140306, Manauli, India
[7] Univ Clermont Auvergne, 4,Ave Blaise Pascal, F-63178 Aubire, France
[8] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
[9] Damascus Univ, Fac Sci, Math Dept, Damascus, Syria
[10] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland
[11] Max Planck Inst Nucl Phys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
关键词
GENERALIZED UNCERTAINTY PRINCIPLE; HAWKING RADIATION; LENGTH; ANALOG; SOLITONS; EQUATION; SPACE; PHASE;
D O I
10.1209/0295-5075/124/44001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we have constructed the Feynman path integral method for non-paraxial optics. This is done by using the mathematical analogy between a non-paraxial optical system and the generalized Schrodinger equation deformed by the existence a minimal measurable length. Using this analogy, we investigated the consequences of a minimal length in this optical system. This path integral has been used to obtain instanton solution for such an optical system. Moreover, the Berry phase of this optical system has been investigated. These results may disclose a new way to use the path integral approach in optics. Furthermore, as such systems with an intrinsic minimal length have been studied in quantum gravity, the ultra-focused optical pulses can be used as an optical analog of quantum gravity. Copyright (C) EPLA, 2018.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Path Integral Approach to Quantum Thermodynamics
    Funo, Ken
    Quan, H. T.
    PHYSICAL REVIEW LETTERS, 2018, 121 (04)
  • [22] QED spectra in the path integral formalism
    Simonov, Yu. A.
    PHYSICAL REVIEW D, 2014, 90 (01):
  • [23] Path integral in position-deformed Heisenberg algebra with maximal length uncertainty
    Lawson, Latevi M.
    Osei, Prince K.
    Sodoga, Komi
    Soglohu, Fred
    ANNALS OF PHYSICS, 2023, 457
  • [24] Path integral renormalization in loop quantum cosmology
    Bodendorfer, Norbert
    Han, Muxin
    Haneder, Fabian
    Liu, Hongguang
    PHYSICAL REVIEW D, 2021, 103 (12)
  • [25] The EUP Dirac Oscillator: A Path Integral Approach
    Merad, A.
    Aouachria, M.
    Benzair, H.
    FEW-BODY SYSTEMS, 2020, 61 (04)
  • [26] Path integral quantization of the relativistic Hopfield model
    Belgiorno, F.
    Cacciatori, S. L.
    Dalla Piazza, F.
    Doronzo, M.
    PHYSICAL REVIEW D, 2016, 93 (06)
  • [27] Q-curvature and path integral complexity
    Camargo, Hugo A.
    Caputa, Pawel
    Nandy, Pratik
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (04)
  • [28] Non-Hermitian and topological photonics: optics at an exceptional point
    Parto, Midya
    Liu, Yuzhou G. N.
    Bahari, Babak
    Khajavikhan, Mercedeh
    Christodoulides, Demetrios N.
    NANOPHOTONICS, 2021, 10 (01) : 403 - 423
  • [29] Path Integral Action for a Resonant Detector of Gravitational Waves in the Generalized Uncertainty Principle Framework
    Sen, Soham
    Bhattacharyya, Sukanta
    Gangopadhyay, Sunandan
    UNIVERSE, 2022, 8 (09)
  • [30] Random non-Hermitian action theory for stochastic quantum dynamics: from canonical to path integral quantization
    Wang, Pei
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (13)