Path integral for non-paraxial optics

被引:7
|
作者
Braidotti, Maria Chiara [1 ,2 ,10 ]
Conti, Claudio [2 ,3 ]
Faizal, Mir [4 ,5 ]
Dey, Sanjib [6 ]
Alasfar, Lina [7 ,11 ]
Alsaleh, Salwa [8 ]
Ashour, Amani [9 ]
机构
[1] Univ Aquila, Dept Phys & Chem Sci, Via Vetoio 10, I-67010 Laquila, Italy
[2] Natl Res Council ISC CNR, Inst Complex Syst, Via Taurini 19, I-00185 Rome, Italy
[3] Univ Sapienza, Dept Phys, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[4] Univ British Columbia Okanagan, Irving K Barber Sch Arts & Sci, 3333 Univ Way, Kelowna, BC V1V 1V7, Canada
[5] Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 3M4, Canada
[6] Indian Inst Sci Educ & Res Mohali, Dept Phys Sci, Sect 81, Sas Nagar 140306, Manauli, India
[7] Univ Clermont Auvergne, 4,Ave Blaise Pascal, F-63178 Aubire, France
[8] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
[9] Damascus Univ, Fac Sci, Math Dept, Damascus, Syria
[10] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland
[11] Max Planck Inst Nucl Phys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
关键词
GENERALIZED UNCERTAINTY PRINCIPLE; HAWKING RADIATION; LENGTH; ANALOG; SOLITONS; EQUATION; SPACE; PHASE;
D O I
10.1209/0295-5075/124/44001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we have constructed the Feynman path integral method for non-paraxial optics. This is done by using the mathematical analogy between a non-paraxial optical system and the generalized Schrodinger equation deformed by the existence a minimal measurable length. Using this analogy, we investigated the consequences of a minimal length in this optical system. This path integral has been used to obtain instanton solution for such an optical system. Moreover, the Berry phase of this optical system has been investigated. These results may disclose a new way to use the path integral approach in optics. Furthermore, as such systems with an intrinsic minimal length have been studied in quantum gravity, the ultra-focused optical pulses can be used as an optical analog of quantum gravity. Copyright (C) EPLA, 2018.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Non-paraxial dispersive shock-waves
    Gentilini, Silvia
    Del Re, Eugenio
    Conti, Claudio
    OPTICS COMMUNICATIONS, 2015, 355 : 445 - 450
  • [2] Helmholtz non-paraxial beam propagation method: An assessment
    Chamorro-Posada, Pedro
    McDonald, Graham S.
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2014, 23 (04)
  • [3] An Efficient Scalar, Non-Paraxial Beam Propagation Method
    Motes, R. Andrew
    Shakir, Sami A.
    Berdine, Richard W.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2012, 30 (01) : 4 - 8
  • [4] Ultrafast farfield simulation of non-paraxial computer generated holograms
    Linss, Sebastian
    Michaelis, Dirk
    Zeitner, Uwe D.
    OPTICS EXPRESS, 2022, 30 (08): : 13765 - 13775
  • [5] Simulating general relativity and non-commutative geometry by non-paraxial quantum fluids
    Marcucci, Giulia
    Conti, Claudio
    NEW JOURNAL OF PHYSICS, 2019, 21 (12):
  • [6] Filamentation of laser beams and excitation of ion acoustic wave in non-paraxial region
    Chauhan, P. K.
    Purohit, G.
    Sharma, R. P.
    23RD NATIONAL SYMPOSIUM ON PLASMA SCIENCE AND TECHNOLOGY (PLASMA-2008), 2010, 208
  • [7] Propagation property of the non-paraxial vector Lissajous singularity beams in free space
    Chen, Haitao
    Gao, Zenghui
    OPTICS COMMUNICATIONS, 2016, 380 : 368 - 376
  • [8] FDTD computational study of nanoplasmonic guiding structures for non-paraxial spatial solitons
    Lubin, Zachary
    Greene, Jethro H.
    Taflove, Allen
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2012, 54 (12) : 2679 - 2684
  • [9] Interaction of the Lissajous singularity and singular Lissajous line carried by non-paraxial vector beams
    Chen, Haitao
    Gao, Zenghui
    JOURNAL OF MODERN OPTICS, 2017, 64 (03) : 309 - 316
  • [10] FDTD Computational Study of Ultra-Narrow TM Non-Paraxial Spatial Soliton Interactions
    Lubin, Zachary
    Greene, Jethro H.
    Taflove, Allen
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2011, 21 (05) : 228 - 230