Magnetoelastic coupling enabled tunability of magnon spin current generation in two-dimensional antiferromagnets

被引:15
作者
Bazazzadeh, N. [1 ]
Hamdi, M. [1 ,6 ]
Park, S. [2 ,3 ,4 ]
Khavasi, A. [5 ]
Mohseni, S. M. [1 ]
Sadeghi, A. [1 ]
机构
[1] Shahid Beheshti Univ, Dept Phys, Tehran 1983969411, Iran
[2] Inst for Basic Sci Korea, Ctr Correlated Electron Syst, Seoul 08826, South Korea
[3] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea
[4] Seoul Natl Univ, Ctr Theoret Phys CTP, Seoul 08826, South Korea
[5] Sharif Univ Technol, Dept Elect Engn, Tehran, Iran
[6] Ecole Polytech Fed Lausanne, Inst Mat IMX, Lab Nanoscale Magnet Mat & Magnon LMGN, Sch Engn STI, CH-1015 Lausanne, Switzerland
基金
新加坡国家研究基金会;
关键词
MPS3; M; CRSITE3; WAVES; MN; FE;
D O I
10.1103/PhysRevB.104.L180402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically investigate the magnetoelastic coupling (MEC) and its effect on magnon transport in two-dimensional antiferromagnets with a honeycomb lattice. MEC coefficients along with magnetic exchange parameters and spring constants are computed for monolayers of transition-metal trichalcogenides with Neel magnetic order (MnPS3 and VPS3) and zigzag order (CrSiTe3, NiPS3, and NiPSe3) by ab initio calculations. Using these parameters, we predict that the spin-Nernst coefficient is significantly enhanced due to magnetoelastic coupling. Our study shows that although Dzyaloshinskii-Moriya interaction can produce spin-Nernst effect in these materials, other mechanisms such as magnon-phonon coupling should be taken into account. We also demonstrate that the magnetic anisotropy is an important factor for control of magnon-phonon hybridization and enhancement of the Berry curvature and thus the spin-Nernst coefficient. Our results pave the way toward gate tunable spin current generation in two-dimensional magnets by spin-Nernst effect via electric field modulation of MEC and anisotropy.
引用
收藏
页数:6
相关论文
共 48 条
  • [31] Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865
  • [32] Origin of the high-frequency doublet in the vibrational spectrum of vitreous SiO2
    Sarnthein, J
    Pasquarello, A
    Car, R
    [J]. SCIENCE, 1997, 275 (5308) : 1925 - 1927
  • [33] Experimental evidence consistent with a magnon Nernst effect in the antiferromagnetic insulator MnPS3
    Shiomi, Y.
    Takashima, R.
    Saitoh, E.
    [J]. PHYSICAL REVIEW B, 2017, 96 (13)
  • [34] Band structure calculations of ferromagnetic chromium tellurides CrSiTe3 and CrGeTe3
    Siberchicot, B
    Jobic, S
    Carteaux, V
    Gressier, P
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (14) : 5863 - 5867
  • [35] Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers
    Sivadas, Nikhil
    Daniels, Matthew W.
    Swendsen, Robert H.
    Okamoto, Satoshi
    Xiao, Di
    [J]. PHYSICAL REVIEW B, 2015, 91 (23)
  • [36] Berry Curvature in Magnon-Phonon Hybrid Systems
    Takahashi, Ryuji
    Nagaosa, Naoto
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (21)
  • [37] Magnetic properties and specific heat of MPS3 (M = Mn, Fe, Zn)
    Takano, Y.
    Arai, N.
    Arai, A.
    Takahashi, Y.
    Takase, K.
    Sekizawa, K.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 272 : E593 - E595
  • [38] Chiral Phonon Transport Induced by Topological Magnons
    Thingstad, Even
    Kamra, Akashdeep
    Brataas, Ame
    Sudbo, Asle
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (10)
  • [39] NEUTRON-DIFFRACTION STUDY OF THE LAYERED COMPOUNDS MNPSE3 AND FEPSE3
    WIEDENMANN, A
    ROSSATMIGNOD, J
    LOUISY, A
    BREC, R
    ROUXEL, J
    [J]. SOLID STATE COMMUNICATIONS, 1981, 40 (12) : 1067 - 1072
  • [40] Search for nonreciprocal magnons in MnPS3
    Wildes, A. R.
    Okamoto, S.
    Xiao, D.
    [J]. PHYSICAL REVIEW B, 2021, 103 (02)