Symbolic Dynamics: Entropy = Dimension = Complexity

被引:14
作者
Simpson, Stephen G. [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
Symbolic dynamics; Entropy; Hausdorff dimension; Kolmogorov complexity;
D O I
10.1007/s00224-014-9546-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let d be a positive integer. Let G be the additive monoid a"center dot (d) or the additive group a"currency sign (d) . Let A be a finite set of symbols. The shift action of G on A (G) is given by S (g) (x)(h) = x(g+h) for all g, h a G and all x a A (G) . A G-subshift is defined to be a nonempty closed set X aS dagger A (G) such that S (g) (x)aX for all g a G and all x a X. Given a G-subshift X, the topological entropy ent(X) is defined as usual (Ruelle Trans. Am. Math. Soc. 187, 237-251, 1973). The standard metric on A (G) is defined by rho(x, y) = where n is as large as possible such that xa dagger 3/4F (n) = ya dagger 3/4F (n) . Here F (n) = {0, 1, aEuro broken vertical bar , n} (d) if G = a"center dot (d) , and F (n) = {-n, aEuro broken vertical bar , -1, 0, 1, aEuro broken vertical bar , n} (d) if G = a"currency sign (d) . For any X aS dagger A (G) the Hausdorff dimension dim(X) and the effective Hausdorff dimension effdim(X) are defined as usual (Hausdorff Math. Ann. 79, 157-179 1919; Reimann 2004; Reimann and Stephan 2005) with respect to the standard metric. It is well known that effdim(X) = sup (xaX) lim inf (n) K(xa dagger 3/4F (n) )/|F (n) | where K denotes Kolmogorov complexity (Downey and Hirschfeldt 2010). If X is a G-subshift, we prove that ent(X) = dim(X) = effdim(X), and ent(X) a parts per thousand yen limsup (n) K(xa dagger 3/4F (n) )/|F (n) | for all x a X, and ent(X) = lim (n) K(xa dagger 3/4F (n) )/|F (n) | for some x is an element of X.
引用
收藏
页码:527 / 543
页数:17
相关论文
共 34 条
  • [1] [Anonymous], 2006, Elements of Information Theory
  • [2] [Anonymous], 2003, FRACTAL GEOMETRY, DOI DOI 10.1002/0470013850
  • [3] [Anonymous], 1976, LECT NOTES MATH
  • [4] [Anonymous], 1983, Trans. Moscow Math. Soc.
  • [5] TOPOLOGICAL ENTROPY FOR NONCOMPACT SETS
    BOWEN, R
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 184 (OCT) : 125 - 136
  • [6] Boyle M, 2008, CONTEMP MATH, V469, P69
  • [7] Bowen's equation in the non-uniform setting
    Climenhaga, Vaughn
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2011, 31 : 1163 - 1182
  • [8] Downey RG, 2010, THEOR APPL COMPUT, P401, DOI 10.1007/978-0-387-68441-3
  • [9] FURSTENBERG H, 1967, Theory of Computing Systems, DOI [DOI 10.1007/BF01692494, 10.1007/BF01692494]
  • [10] Hausdorff F, 1919, MATH ANN, V79, P157