Systematic wave-equation finite difference time domain formulations for modeling electromagnetic wave-propagation in general linear and nonlinear dispersive materials

被引:5
作者
Ramadan, Omar [1 ]
机构
[1] Eastern Mediterranean Univ, Dept Comp Engn, TR-10 Gazimagusa, Mersin, Turkey
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2015年 / 26卷 / 04期
关键词
Finite difference time domain; wave-equation; Kerr-Raman nonlinear effect; dispersive media; perfectly matched layer; negative index metamaterials; MAXWELLS EQUATIONS; FDTD ALGORITHM; MEDIA; ELECTRODYNAMICS; OPTICS;
D O I
10.1142/S0129183115500461
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, systematic wave-equation finite difference time domain (WE-FDTD) formulations are presented for modeling electromagnetic wave-propagation in linear and nonlinear dispersive materials. In the proposed formulations, the complex conjugate pole residue (CCPR) pairs model is adopted in deriving a unified dispersive WE-FDTD algorithm that allows modeling different dispersive materials, such as Debye, Drude and Lorentz, in the same manner with the minimal additional auxiliary variables. Moreover, the proposed formulations are incorporated with the wave-equation perfectly matched layer (WE-PML) to construct a material independent mesh truncating technique that can be used for modeling general frequency-dependent open region problems. Several numerical examples involving linear and nonlinear dispersive materials are included to show the validity of the proposed formulations.
引用
收藏
页数:15
相关论文
共 50 条
[41]   A general optimal method for a 2D frequency-domain finite-difference solution of scalar wave equation [J].
Fan, Na ;
Zhao, Lian-Feng ;
Xie, Xiao-Bi ;
Tang, Xin-Gong ;
Yao, Zhen-Xing .
GEOPHYSICS, 2017, 82 (03) :T121-T132
[42]   2D Laplace-Fourier domain acoustic wave equation modeling with an optimal finite-difference method [J].
Wang, Jing-Yu ;
Fan, Na ;
Chen, Xue-Fei ;
Zhong, Shou-Rui ;
Li, Bo-Yu ;
Li, Dan ;
Zhao, Gang .
APPLIED GEOPHYSICS, 2025, 22 (01) :119-131
[43]   Finite-Element Time-Domain Solution of the Vector Wave Equation in Doubly Dispersive Media Using Mobius Transformation Technique [J].
Akbarzadeh-Sharbaf, Ali ;
Giannacopoulos, Dennis D. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (08) :4158-4166
[44]   Solving the tensorial 3D acoustic wave equation: A mimetic finite-difference time-domain approach [J].
Shragge, Jeffrey ;
Tapley, Benjamin .
GEOPHYSICS, 2017, 82 (04) :T183-T196
[45]   A new linear optimized time-space domain spatial implicit and temporal high-order finite-difference scheme for scalar wave modeling [J].
Wang, Jing ;
Liu, Yang ;
Zhou, Hongyu .
JOURNAL OF APPLIED GEOPHYSICS, 2022, 201
[46]   A finite-difference iterative solver of the Helmholtz equation for frequency-domain seismic wave modeling and full-waveform inversion [J].
Huang, Xingguo ;
Greenhalgh, Stewart .
GEOPHYSICS, 2021, 86 (02) :T107-T116
[47]   Finite-difference frequency-domain modeling of viscoacoustic wave propagation in 2D tilted transversely isotropic (TTI) media [J].
Operto, Stephane ;
Virieux, Jean ;
Ribodetti, A. ;
Anderson, J. E. .
GEOPHYSICS, 2009, 74 (05) :T75-T95
[48]   Adaptive 9-point frequency-domain finite difference scheme for wavefield modeling of 2D acoustic wave equation [J].
Xu, Wenhao ;
Gao, Jinghuai .
JOURNAL OF GEOPHYSICS AND ENGINEERING, 2018, 15 (04) :1432-1445
[49]   Application of Finite Difference Time Domain to Calculate the Transmission Coefficient of an Electromagnetic Wave Impinging Perpendicularly on a Dielectric Interface with Modified MUR-I ABC [J].
Mukherjee, Biswajeet ;
Vishwakarrna, Dinesh K. .
DEFENCE SCIENCE JOURNAL, 2012, 62 (04) :228-235
[50]   A 3-D Hybrid Maxwells Equations Finite-Difference Time-Domain (ME-FDTD)/Wave Equation Finite-Element Time-Domain (WE-FETD) Method [J].
Wang, Jiaxuan ;
Ren, Qiang .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2023, 71 (06) :5212-5220