Systematic wave-equation finite difference time domain formulations for modeling electromagnetic wave-propagation in general linear and nonlinear dispersive materials

被引:5
作者
Ramadan, Omar [1 ]
机构
[1] Eastern Mediterranean Univ, Dept Comp Engn, TR-10 Gazimagusa, Mersin, Turkey
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2015年 / 26卷 / 04期
关键词
Finite difference time domain; wave-equation; Kerr-Raman nonlinear effect; dispersive media; perfectly matched layer; negative index metamaterials; MAXWELLS EQUATIONS; FDTD ALGORITHM; MEDIA; ELECTRODYNAMICS; OPTICS;
D O I
10.1142/S0129183115500461
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, systematic wave-equation finite difference time domain (WE-FDTD) formulations are presented for modeling electromagnetic wave-propagation in linear and nonlinear dispersive materials. In the proposed formulations, the complex conjugate pole residue (CCPR) pairs model is adopted in deriving a unified dispersive WE-FDTD algorithm that allows modeling different dispersive materials, such as Debye, Drude and Lorentz, in the same manner with the minimal additional auxiliary variables. Moreover, the proposed formulations are incorporated with the wave-equation perfectly matched layer (WE-PML) to construct a material independent mesh truncating technique that can be used for modeling general frequency-dependent open region problems. Several numerical examples involving linear and nonlinear dispersive materials are included to show the validity of the proposed formulations.
引用
收藏
页数:15
相关论文
共 50 条
[21]   A New Efficient Unconditionally Stable Finite-Difference Time-Domain Solution of the Wave Equation [J].
Sadrpour, Seyed-Mojtaba ;
Nayyeri, Vahid ;
Soleimani, Mohammad ;
Ramahi, Omar M. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (06) :3114-3121
[22]   Incident wave source for finite-difference time-domain computation of electromagnetic scattering for objects embedded in layered dispersive media [J].
Yeung M.S. .
Journal of Scientific Computing, 1999, 14 (2) :121-145
[23]   Improved Numerical Modeling of Terahertz Wave Propagation in Epoxy Coating with the Finite-Difference Time-Domain Method [J].
Tu, Wanli ;
Zhong, Shuncong ;
Zhang, Qiukun ;
Huang, Yi ;
Luo, Manting .
COATINGS, 2023, 13 (09)
[24]   A Review of Grid-Based, Time-Domain Modeling of Electromagnetic Wave Propagation Involving the Ionosphere [J].
Niknam, Kaiser ;
Simpson, Jamesina .
IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2021, 6 :214-228
[25]   Convergence analysis of time-domain PMLS for 2D electromagnetic wave propagation in dispersive waveguides [J].
Becache, Eliane ;
Kachanovska, Maryna ;
Wess, Markus .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (04) :2451-2491
[26]   Finite-Difference Time Domain Techniques Applied to Electromagnetic Wave Interactions with Inhomogeneous Plasma Structures [J].
Nicolini, Julio L. ;
Bergmann, Jose Ricardo .
INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2018, 2018
[27]   LOCALLY IMPLICIT DISCONTINUOUS GALERKIN TIME DOMAIN METHOD FOR ELECTROMAGNETIC WAVE PROPAGATION IN DISPERSIVE MEDIA APPLIED TO NUMERICAL DOSIMETRY IN BIOLOGICAL TISSUES [J].
Descombes, Stephane ;
Lanteri, Stephane ;
Moya, Ludovic .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05) :A2611-A2633
[28]   Finite-difference time-domain solution of second-order photoacoustic wave equation [J].
Rahimzadeh, Amin ;
Chen, Sung-Liang .
OPTICA APPLICATA, 2016, 46 (03) :435-446
[29]   Temporal convergence analysis of a locally implicit discontinuous Galerkin time domain method for electromagnetic wave propagation in dispersive media [J].
Descombes, Stephane ;
Lanteri, Stephane ;
Moya, Ludovic .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 316 :122-132
[30]   3D finite-difference modeling of elastic wave propagation in the Laplace-Fourier domain [J].
Petrov, Petr V. ;
Newman, Gregory A. .
GEOPHYSICS, 2012, 77 (04) :T137-T155