A posteriori error estimation in maximum norm for a two-point boundary value problem with a Riemann-Liouville fractional derivative

被引:27
作者
Cen, Zhongdi [1 ]
Liu, Li-Bin [2 ]
Huang, Jian [1 ]
机构
[1] Zhejiang Wanli Univ, Inst Math, Ningbo 315100, Zhejiang, Peoples R China
[2] Nanning Normal Univ, Sch Math & Stat, Nanning 530023, Guangxi, Peoples R China
基金
美国国家科学基金会;
关键词
Riemann-Liouville fractional derivative; Boundary value problem; Gronwall inequality; A posteriori error estimate; SYSTEM; MESHES;
D O I
10.1016/j.aml.2019.106086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Riemann-Liouville two-point boundary value problem is considered. An integral discretization scheme is developed to approximate the Volterra integral equation transformed from the Rieinann-Liouville boundary value problem. The stability results and a posteriori error analysis are given. A solution-adaptive algorithm based on a posteriori error analysis is designed by equidistributing arc-length monitor function. Numerical experiments are presented to support the theoretical result. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 9 条
[2]  
Diethlm K., 2010, LECT NOTES MATH, V2004
[3]   Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problem [J].
Kopteva, N .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (02) :423-441
[5]   Analysis and numerical solution of a Riemann-Liouville fractional derivative two-point boundary value problem [J].
Kopteva, Natalia ;
Stynes, Martin .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2017, 43 (01) :77-99
[6]   Finite difference methods with non-uniform meshes for nonlinear fractional differential equations [J].
Li, Changpin ;
Yi, Qian ;
Chen, An .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 316 :614-631
[7]   ANALYSIS OF A SYSTEM OF SINGULARLY PERTURBED CONVECTION-DIFFUSION EQUATIONS WITH STRONG COUPLING [J].
Linss, Torsten .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) :1847-1862
[8]   A-posteriori error estimation in maximum norm for a strongly coupled system of two singularly perturbed convection-diffusion problems [J].
Liu, Li-Bin ;
Chen, Yanping .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 313 :152-167
[9]   A generalized Gronwall inequality and its application to a fractional differential equation [J].
Ye, Haiping ;
Gao, Jianming ;
Ding, Yongsheng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (02) :1075-1081