Aeroelastic wind energy harvesting by piezoelectric MEMS device with turbulence capturing

被引:2
|
作者
Lee, Yin Jen [1 ]
Qi, Yi [1 ]
Zhou, Guangya [1 ]
Lua, Kim Boon [2 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, Singapore 117575, Singapore
[2] Natl Chiao Tung Univ, Dept Mech Engn, Hsinchu 30010, Taiwan
来源
ENGINEERING RESEARCH EXPRESS | 2020年 / 2卷 / 03期
关键词
MEMS; energy harvesting; vortex-induced vibration; turbulence;
D O I
10.1088/2631-8695/aba21f
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wind tunnel experiments have been conducted to investigate the effect of turbulence on the power output of a MEMS aeroelastic wind energy harvester of approximately 5.5 mm x 5.5 mm x 10 mm in size. The energy harvester consisted mainly of a cylinder (2 mm diameter, 10 mm length) attached to a MEMS platform equipped with piezoelectric. The turbulence is artificially created via a turbulence generator comprising of a series of rectangular beams placed in the wind tunnel upstream of the energy harvester. By varying the wind speed and width of the turbulence generator beams, it is shown that the time-averaged power output of the energy harvester increases significantly as wind speed and turbulence generator size increases. In particular, replacing a 5 mm-width turbulence generator with a 20 mm-width turbulence generator can increase the power output by 1710% at wind speed of 6 m/s. Power output in the magnitude of tens of nanowatts is measured when the device is exposed to turbulent winds. Results suggest that the turbulence capturing concept may be a promising means of harvesting wind energy for miniature Internet-of-Things devices, such as small wireless sensor nodes that are not connected to the power grid.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Tunable MEMS piezoelectric energy harvesting device
    Rivadeneyra, Almudena
    Manuel Soto-Rueda, Juan
    O'Keeffe, Rosemary
    Banqueri, Jesus
    Jackson, Nathan
    Mathewson, Alan
    Lopez-Villanueva, Juan A.
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2016, 22 (04): : 823 - 830
  • [2] Tunable MEMS piezoelectric energy harvesting device
    Almudena Rivadeneyra
    Juan Manuel Soto-Rueda
    Rosemary O’Keeffe
    Jesús Banqueri
    Nathan Jackson
    Alan Mathewson
    Juan A. López-Villanueva
    Microsystem Technologies, 2016, 22 : 823 - 830
  • [3] Vortex-induced vibration wind energy harvesting by piezoelectric MEMS device in formation
    Yin Jen Lee
    Yi Qi
    Guangya Zhou
    Kim Boon Lua
    Scientific Reports, 9
  • [4] Vortex-induced vibration wind energy harvesting by piezoelectric MEMS device in formation
    Lee, Yin Jen
    Qi, Yi
    Zhou, Guangya
    Lua, Kim Boon
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [5] Modeling and simulation of piezoelectric MEMS energy harvesting device
    Lin, J. H.
    Wu, X. M.
    Ren, T. L.
    Liu, L. T.
    INTEGRATED FERROELECTRICS, 2007, 95 : 128 - 141
  • [6] Piezoelectric MEMS for energy harvesting
    Kim, Sang-Gook
    Priya, Shashank
    Kanno, Isaku
    MRS BULLETIN, 2012, 37 (11) : 1039 - 1050
  • [7] Piezoelectric MEMS for energy harvesting
    Sang Gook Kim
    Shashank Priya
    Isaku Kanno
    MRS Bulletin, 2012, 37 : 1039 - 1050
  • [8] Piezoelectric MEMS for energy harvesting
    Kanno, Isaku
    15TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2015), 2015, 660
  • [9] Energy harvesting MEMS device based on thin film piezoelectric cantilevers
    W. J. Choi
    Y. Jeon
    J.-H. Jeong
    R. Sood
    S. G. Kim
    Journal of Electroceramics, 2006, 17 : 543 - 548
  • [10] Energy harvesting MEMS device based on thin film piezoelectric cantilevers
    Choi, W. J.
    Jeon, Y.
    Jeong, J. -H.
    Sood, R.
    Kim, S. G.
    JOURNAL OF ELECTROCERAMICS, 2006, 17 (2-4) : 543 - 548