Many-body localization edge in the random-field Heisenberg chain

被引:796
|
作者
Luitz, David J. [1 ]
Laflorencie, Nicolas [1 ]
Alet, Fabien [1 ]
机构
[1] Univ Toulouse, CNRS, IRSAMC, Phys Theor Lab, F-31062 Toulouse, France
关键词
QUANTUM CHAOS; SYSTEM;
D O I
10.1103/PhysRevB.91.081103
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a large-scale exact diagonalization study of the one-dimensional spin-1/2 Heisenberg model in a random magnetic field. In order to access properties at varying energy densities across the entire spectrum for system sizes up to L = 22 spins, we use a spectral transformation which can be applied in a massively parallel fashion. Our results allow for an energy-resolved interpretation of the many-body localization transition including the existence of an extensive many-body mobility edge. The ergodic phase is well characterized by Gaussian orthogonal ensemble statistics, volume-law entanglement, and a full delocalization in the Hilbert space. Conversely, the localized regime displays Poisson statistics, area-law entanglement, and nonergodicity in the Hilbert space where a true localization never occurs. We perform finite-size scaling to extract the critical edge and exponent of the localization length divergence.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Many-Body Localization in a Disordered Quantum Ising Chain
    Kjaell, Jonas A.
    Bardarson, Jens H.
    Pollmann, Frank
    PHYSICAL REVIEW LETTERS, 2014, 113 (10)
  • [22] The Behavior of Many-body Localization in the Periodically Driven Heisenberg XXX Model
    Zhao, Hui
    Hu, Taotao
    Xue, Kang
    Li, Haoyue
    Li, Xiaodan
    Ni, Shuangyuan
    Zhang, Jiali
    Ren, Hang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (08) : 3177 - 3187
  • [23] The Behavior of Many-body Localization in the Periodically Driven Heisenberg XXX Model
    Hui Zhao
    Taotao Hu
    Kang Xue
    Haoyue Li
    Xiaodan Li
    Shuangyuan Ni
    Jiali Zhang
    Hang Ren
    International Journal of Theoretical Physics, 2021, 60 : 3177 - 3187
  • [24] From Anderson localization on random regular graphs to many-body localization
    Tikhonov, K. S.
    Mirlin, A. D.
    ANNALS OF PHYSICS, 2021, 435
  • [25] Many-Body Resonances in the Avalanche Instability of Many-Body Localization
    Ha, Hyunsoo
    Morningstar, Alan
    Huse, David A.
    PHYSICAL REVIEW LETTERS, 2023, 130 (25)
  • [26] Many-body localization in a quantum simulator with programmable random disorder
    Smith, J.
    Lee, A.
    Richerme, P.
    Neyenhuis, B.
    Hess, P. W.
    Hauke, P.
    Heyl, M.
    Huse, D. A.
    Monroe, C.
    NATURE PHYSICS, 2016, 12 (10) : 907 - 911
  • [27] Many-body localization in a quantum simulator with programmable random disorder
    J. Smith
    A. Lee
    P. Richerme
    B. Neyenhuis
    P. W. Hess
    P. Hauke
    M. Heyl
    D. A. Huse
    C. Monroe
    Nature Physics, 2016, 12 : 907 - 911
  • [28] Random Matrix Ensemble for the Level Statistics of Many-Body Localization
    Buijsman, Wouter
    Cheianov, Vadim
    Gritsev, Vladimir
    PHYSICAL REVIEW LETTERS, 2019, 122 (18)
  • [29] Absence of full many-body localization in the disordered Hubbard chain
    Prelovsek, P.
    Barisic, O. S.
    Znidaric, M.
    PHYSICAL REVIEW B, 2016, 94 (24)
  • [30] Many-body localization in spin chain systems with quasiperiodic fields
    Lee, Mac
    Look, Thomas R.
    Lim, S. P.
    Sheng, D. N.
    PHYSICAL REVIEW B, 2017, 96 (07)