Improving the Erdos-Ginzburg-Ziv theorem for some non-abelian groups

被引:35
作者
Bass, Jared [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
Erdos-Ginzburg-Ziv theorem; zero-sum problem; dihedral groups;
D O I
10.1016/j.jnt.2006.10.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a group of order m. Define s(G) to be the smallest value of t such that out of any t elements in G, there are m with product 1. The Erdos-Ginzburg-Ziv theorem gives the upper bound s(G) <= 2m - 1, and a lower bound is given by s(G) >= D(G) +m - 1, where D(G) is Davenport's constant. A conjecture by Zhuang and Gao [J.J. Zhuang, W.D. Gao, Erdos-Ginzburg-Ziv theorem for dihedral groups of large prime index, European J. Combin. 26 (2005) 1053-1059] asserts that s(G) = D(G) +m - 1, and Gao [W.D. Gao, A combinatorial problem on finite abelian groups, J. Number Theory 58 (1996) 100-103] has proven this for all abelian G. In this paper we verify the conjecture for a few classes of non-abelian groups: dihedral and dicyclic groups, and all non-abelian groups of order pq for p and q prime. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:217 / 236
页数:20
相关论文
共 11 条
[1]  
ERDOS P, 1961, B RES COUNC ISRAEL, VF 10, P41
[2]  
Gao W., 1996, ACTA MATH SINICA, V39, P514
[3]   A combinatorial problem on finite Abelian groups [J].
Gao, WD .
JOURNAL OF NUMBER THEORY, 1996, 58 (01) :100-103
[4]   An addition theorem for finite cyclic groups [J].
Gao, WD .
DISCRETE MATHEMATICS, 1997, 163 (1-3) :257-265
[5]  
GAO WD, 2006, ERDOS GINZBURG ZIV T
[6]  
NATHANSON MB, 1996, ADDITIVE NUMBER THEO
[7]  
Olson J. E., 1977, Number Theory and Algebra, P215
[8]   COMBINATORIAL PROBLEM OF ERDOS, GINZBURG, AND ZIV [J].
OLSON, JE .
JOURNAL OF NUMBER THEORY, 1976, 8 (01) :52-57
[9]   BOUNDS FOR COUNTER-EXAMPLES TO ADDITION THEOREMS IN SOLVABLE-GROUPS [J].
YUSTER, T .
ARCHIV DER MATHEMATIK, 1988, 51 (03) :223-231
[10]   A GENERALIZATION OF AN ADDITION THEOREM FOR SOLVABLE-GROUPS [J].
YUSTER, T ;
PETERSON, B .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1984, 36 (03) :529-536